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Thus far, regression:

predict a continuous value given some inputs



Reading Your Brain, Simple Example

. o _ [Mitchell et al.]
Pairwise classification accuracy: 85%

Person ™ .. Animal




Classification

c Learnf: X>Y
« X - features
- Y - target classes

- Loss Function
- Expected loss of f:



Classification

Learnf: X>Y
« X - features
- Y - target classes

Loss Function 4(f(z),y) = 1{f(z) # y}

Expected loss of f:
Exy[1{f(X) #Y}] = Ex[Eyx[1{f(z) # Y }|X = 2]

Ey x[1{f(z) # VX =2] = S P(Y = ilX =2)1{f(z) #i} = 3. P(Y =i|X =)
i iZ£f(x)
—1—P(Y = f(@)|X =)

Suppose you knew P(YIX) exactly, how should you classify?



Classification

e Learnf: X>Y
« X - features
- Y - target classes

. Loss Function {(f(z),y) = 1{f(x) # y}

- Expected loss of f:
Exy[1{f(X) #Y}] = Ex[Eyx[1{f(z) # Y }|X = 2]

Ey x[1{f(z) # VX =2] = S P(Y = ilX =2)1{f(z) #i} = 3. P(Y =i|X =)
i iZ£f(x)
—1—P(Y = f(@)|X =)

- Suppose you knew P(YIX) exactly, how should you classify?

- Bayes-Optimal classifier:
f(x) = argmaxP(Y = y| X = x)
Y



Bayes Optimal Binary Classifier
Y €4{0,1}

- Suppose you knew P(YIX) exactly, how should you classify?
- Bayes-Optimal classifier:

f(x) = argmaxP(Y = y| X = x)
Y
- Suppose we don’t know P(YIX), but have n iid examples

(@, ¥4) ey

- What is a natural estimator for P(Y | X)?



Bayes Optimal Binary Classifier
- Suppose we don’t know P(YIX), but have n iid examples
{(xiayi) ?:1 Y € {0’1}
- What is a natural estimator for P(Y | X)?

Fix some x € X
Suppose r; = T for m < n samples
What is a natural estimator for 8, :=P(Y = 1|X = 2)7

If k£ of the m labels are equal to Y = 1 then



Bayes Optimal Binary Classifier
- Suppose we don’t know P(YIX), but have n iid examples
n
{(xi, yi) iea Y € {0,1}
- What is a natural estimator for argmax_y P(Y =y | X)?

If X ={0,1}¢, or is generally discrete

Z?:l 1 [Xi :X7Yi:y]

f(x) = arg aXye{o0,1} T 1[x=x]

Issues?



Process

Collect a dataset
Decide on a model

Find the function which fits the data best
Choose a loss function
Pick the function which minimizes loss
on data

Use function to make prediction on new
examples

10



Decide on a model, Binary Classification

To make predictions for unseen inputs (xs),

need a general model for P(Y = 1|X = z)

- What about standard linear regression model?

* Need to map real values to [0,1]
« We call such maps “link functions”

11



Logistic Regression

Actually classification, not regression :)

Learn P(Y = 1|X = z) using o(w!'z), for link function o =

1

Logistic function(or Sigmoid):

1+ exp(—=2)

1
1 + exp(—w™x)

PY =1|X = z,w] = U(wT ) =

exp(—w!z)

1 + exp(—wTx) ,
B 1 = osf
1 +exp(wTx) 7

PY =0|X =z,w]=1— U(wT:c) =

Features can be discrete or continuous!



Understanding the sigmoid
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Logistic Regression
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Process

Decide on a model

Find the function which fits the data best
Choose a loss function
Pick the function which minimizes loss
on data

Use function to make prediction on new
examples
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Logistic Regression

Actually classification, not regression :)

Learn P(Y = 1|X = z) using o(w!'z), for link function o =

1

Logistic function(or Sigmoid):

1+ exp(—=2)

1
1 + exp(—w™x)

PY =1|X = z,w] = U(wT ) =

exp(—w!z)

1 + exp(—wTx) ,
B 1 = osf
1 +exp(wTx) 7

PY =0|X =z,w]=1— U(wT:c) =

Features can be discrete or continuous!



Sigmoid for binary classes

1
1+ exp(wo + ) _j wpXk)

X

1 + exp(wo + >, wipXk)

P(Y = 1w, X)

P(Y = 0w, X)



Sigmoid for binary classes

1

P(Y = X) =
( Ofee, X) 1+ exp(wo + > wrXk)

exp(wo + ), wpXk)

PY = 1llw,X) =1—-PY = 0w, X) = + exp(wo + 35, wiXr)

P(Y = 1w, X)
P(Y = 0w, X)

= exp(wo + Zkak)
k

Linear Decision Rule!

P(Y =1|lw, X
( ‘w’ ) :wo—I—Zkak
k

P(Y = 0w, X)

log



Logistic Regression —
a Linear classifier 1 "
1+ exp(—=2)
= + T
.:I']:.
= = :H:.
_ - 9P
.:I']:.
= ais
ais ais
- T
log P(Y = 1|w, X)

== X
B = 0w, x) 0T 2 ks



Process

Decide on a model

Find the function which fits the data best
Choose a loss function
Pick the function which minimizes loss
on data

Use function to make prediction on new
examples
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Loss function: Conditional Likelihood

Have a bunch of iid data: {(xi,yi) iy x5 € R%, y; € {-1,1}

1
1 + exp(wlz)

PY = —1|z,w) =

exp(w!x)

1 4 exp(w!'z)

PY =1|z,w) =

This is equivalent to:

1
PY =ylz,w) =

1 + exp(—y wlz)

So we can compute the maximum likelihood estimator:

mn
WM LE = arg mng P(yi|zi, w)
i—1



Loss function: Conditional Likelihood

Have a bunch of iid data: {(:Ez, yz) ?’:1 Ti € Rd, y; € {—1,1}
1

P(Y = =
( yl, w) 1+ exp(—ywTx)

mn
WM LE = arg mng P(yi|zi, w)
i1

= arg min Z log(1 + exp(—y; x; w))
i=1

Logistic Loss: ¢;(w) = log(1 + exp(—y; ] w))

Squared error Loss: £;(w) = (y; — zl w)?

(MLE for Gaussian noise)



Process

Decide on a model

Find the function which fits the data best
Choose a loss function
Pick the function which minimizes loss
on data

Use function to make prediction on new
examples

©2018 Kevin Jamieson
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Loss function: Conditional Likelihood

Have a bunch of iid data:  {(z;,4;)}i—; x; € RY, y,; € {—-1,1}
1

P(Y = =
( yle, w) 1+ exp(—ywTx)

n
Wy LE = arg mng Py, w)
i=1

= arg H?ljnz log(l + eXp(_yz' :C?UJ)) — J(UJ)
1=1

What does J(w) look like? Is it convex?



Loss function: Conditional Likelihood



Loss function: Conditional Likelihood

Have a bunch of iid data:  {(z;,4;)}i—; x; € RY, y,; € {—-1,1}
1
1+ exp(—yw!z)

PY =ylz,w) =
mn
Wy LE = arg max H Py, w)
1=1

= arg H?ljnz log(l + eXp(_yz' :C?UJ)) — J(w)
1=1

Good news: J(w) is convex function of w, no local optima problems
Bad news: no closed-form solution to maximize J(w)

Good news: convex functions easy to optimize



Overfitting and Linear Separability

n
argmin ) log(1 + exp(—y; z; w)) When is this loss small?
w
1=1
Eﬂ:l =]

el -

Eﬂ:l =]

ok ¥ _ =
d

ol - -

Eﬂ:l Eﬂ:l =] =]




Large parameters — Overfitting

When data is linearly separable, weights = oo

1 1
1+e?* 1+e 22

Overfitting

Penalize high weights to prevent overfitting?

14 6—10033



Regularized Conditional Log Likelihood

Add a penalty to avoid high weights/overfitting?:

argmleog 1+ exp(—y; (z; w+b))) + Al|w||5
1=1

Be sure to not regularize the offset b!
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