Classification Logistic Regression

Thus far, regression:

predict a continuous value given some inputs

Reading Your Brain, Simple Example

[Mitchell et al.]

Pairwise classification accuracy: 85%

Person -

Animal

Classification

- · Learn f: X -> Y
 - · X features
 - Y target classes
- Loss Function
- Expected loss of f:

Classification

- · Learn f: X -> Y
 - X features
 - Y target classes
- Loss Function $\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$
- Expected loss of f:

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_{X}[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$

$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = \sum_{i} P(Y = i|X = x)\mathbf{1}\{f(x) \neq i\} = \sum_{i \neq f(x)} P(Y = i|X = x)$$

$$= 1 - P(Y = f(x)|X = x)$$

Suppose you knew P(YIX) exactly, how should you classify?

Classification

- · Learn f: X -> Y
 - X features
 - Y target classes
- Loss Function $\ell(f(x), y) = \mathbf{1}\{f(x) \neq y\}$
- Expected loss of f:

$$\mathbb{E}_{XY}[\mathbf{1}\{f(X) \neq Y\}] = \mathbb{E}_{X}[\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x]]$$

$$\mathbb{E}_{Y|X}[\mathbf{1}\{f(x) \neq Y\}|X = x] = \sum_{i} P(Y = i|X = x)\mathbf{1}\{f(x) \neq i\} = \sum_{i \neq f(x)} P(Y = i|X = x)$$

$$= 1 - P(Y = f(x)|X = x)$$

- Suppose you knew P(YIX) exactly, how should you classify?
 - Bayes-Optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

Bayes Optimal Binary Classifier

$$Y \in \{0, 1\}$$

- Suppose you knew P(YIX) exactly, how should you classify?
 - Bayes-Optimal classifier:

$$f(x) = \arg\max_{y} \mathbb{P}(Y = y | X = x)$$

Suppose we don't know P(YIX), but have n iid examples

$$\{(x_i, y_i)\}_{i=1}^n$$

What is a natural estimator for P(Y I X)?

Bayes Optimal Binary Classifier

Suppose we don't know P(YIX), but have n iid examples

$$\{(x_i, y_i)\}_{i=1}^n \qquad Y \in \{0, 1\}$$

What is a natural estimator for P(Y I X)?

Fix some $\tilde{x} \in X$

Suppose $x_i = \tilde{x}$ for $m \leq n$ samples

What is a natural estimator for $\theta_* := \mathbb{P}(Y = 1 | X = \tilde{x})$?

If k of the m labels are equal to Y = 1 then

Bayes Optimal Binary Classifier

Suppose we don't know P(YIX), but have n iid examples

$$\{(x_i, y_i)\}_{i=1}^n \qquad Y \in \{0, 1\}$$

What is a natural estimator for argmax_y P(Y = y I X)?

If
$$X = \{0,1\}^d$$
, or is generally discrete

$$\hat{f}(x) = \arg\max_{y \in \{0,1\}} \frac{\sum_{i=1}^{n} \mathbf{1}[\mathbf{x_i} = \mathbf{x}, \mathbf{y_i} = \mathbf{y}]}{\sum_{i=1}^{n} \mathbf{1}[\mathbf{x_i} = \mathbf{x}]}$$

Issues?

Process

Collect a dataset

Decide on a model

Find the function which fits the data best

Choose a loss function

Pick the function which minimizes loss
on data

Use function to make prediction on new examples

Decide on a model, Binary Classification

To make predictions for unseen inputs (xs),

need a **general** model for
$$\mathbb{P}(Y=1|X=x)$$

What about standard linear regression model?

- Need to map real values to [0,1]
 - We call such maps "link functions"

Logistic Regression

Actually classification, not regression:)

Learn $\mathbb{P}(Y=1|X=x)$ using $\sigma(w^Tx)$, for link function $\sigma=$

$$\frac{1}{1 + exp(-z)}$$

$$\mathbb{P}[Y = 1 | X = x, w] = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

$$\mathbb{P}[Y = 0|X = x, w] = 1 - \sigma(w^T x) = \frac{\exp(-w^T x)}{1 + \exp(-w^T x)}$$
$$= \frac{1}{1 + \exp(w^T x)}$$

Features can be discrete or continuous!

Understanding the sigmoid

$$\sigma(w_0 + \sum_k w_k x_k) = \frac{1}{1 + e^{w_0 + \sum_k w_k x_k}}$$

Logistic Regression

Process

Decide on a model

Find the function which fits the data best

Choose a loss function

Pick the function which minimizes loss
on data

Use function to make prediction on new examples

Logistic Regression

Actually classification, not regression:)

Learn $\mathbb{P}(Y=1|X=x)$ using $\sigma(w^Tx)$, for link function $\sigma=$

$$\frac{1}{1 + exp(-z)}$$

$$\mathbb{P}[Y = 1 | X = x, w] = \sigma(w^T x) = \frac{1}{1 + \exp(-w^T x)}$$

$$\mathbb{P}[Y = 0|X = x, w] = 1 - \sigma(w^T x) = \frac{\exp(-w^T x)}{1 + \exp(-w^T x)}$$
$$= \frac{1}{1 + \exp(w^T x)}$$

Features can be discrete or continuous!

Sigmoid for binary classes

$$\mathbb{P}(Y = 0|w, X) = \frac{1}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\mathbb{P}(Y = 1|w, X) = 1 - \mathbb{P}(Y = 0|w, X) = \frac{\exp(w_0 + \sum_k w_k X_k)}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\frac{\mathbb{P}(Y=1|w,X)}{\mathbb{P}(Y=0|w,X)} =$$

Sigmoid for binary classes

$$\mathbb{P}(Y = 0|w, X) = \frac{1}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\mathbb{P}(Y = 1|w, X) = 1 - \mathbb{P}(Y = 0|w, X) = \frac{\exp(w_0 + \sum_k w_k X_k)}{1 + \exp(w_0 + \sum_k w_k X_k)}$$

$$\frac{\mathbb{P}(Y=1|w,X)}{\mathbb{P}(Y=0|w,X)} = \exp(w_0 + \sum_k w_k X_k)$$

Linear Decision Rule!

$$\log \frac{\mathbb{P}(Y=1|w,X)}{\mathbb{P}(Y=0|w,X)} = w_0 + \sum_k w_k X_k$$

Logistic Regression – a Linear classifier $\overline{1 + exp(-z)}$

$$\log \frac{\mathbb{P}(Y=1|w,X)}{\mathbb{P}(Y=0|w,X)} = w_0 + \sum_k w_k X_k$$

Process

Decide on a model

Find the function which fits the data best

Choose a loss function

Pick the function which minimizes loss
on data

Use function to make prediction on new examples

Have a bunch of iid data:

$$\{(x_i, y_i)\}_{i=1}^n \quad x_i \in \mathbb{R}^d, \quad y_i \in \{-1, 1\}$$

$$P(Y = -1|x, w) = \frac{1}{1 + \exp(w^T x)}$$

$$P(Y = 1|x, w) = \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$

This is equivalent to:

$$P(Y = y|x, w) = \frac{1}{1 + \exp(-y \, w^T x)}$$

So we can compute the maximum likelihood estimator:

$$\widehat{w}_{MLE} = \arg\max_{w} \prod_{i=1} P(y_i|x_i, w)$$

Have a bunch of iid data: $\{(x_i,y_i)\}_{i=1}^n \quad x_i\in\mathbb{R}^d, \quad y_i\in\{-1,1\}$ $P(Y=y|x,w)=\frac{1}{1+\exp(-u\,w^Tx)}$

$$\widehat{w}_{MLE} = \arg \max_{w} \prod_{i=1}^{n} P(y_i|x_i, w)$$

$$= \arg \min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w))$$

Logistic Loss: $\ell_i(w) = \log(1 + \exp(-y_i x_i^T w))$

Squared error Loss: $\ell_i(w) = (y_i - x_i^T w)^2$

(MLE for Gaussian noise)

Process

Decide on a model

Find the function which fits the data best

Choose a loss function

Pick the function which minimizes loss
on data

Use function to make prediction on new examples

©2018 Kevin Jamieson

- Have a bunch of iid data: $\{(x_i,y_i)\}_{i=1}^n \quad x_i\in\mathbb{R}^d, \quad y_i\in\{-1,1\}$ $P(Y=y|x,w)=\frac{1}{1+\exp(-y\,w^Tx)}$

$$\widehat{w}_{MLE} = \arg \max_{w} \prod_{i=1}^{n} P(y_i|x_i, w)$$

$$= \arg \min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w)) = J(w)$$

What does J(w) look like? Is it convex?

- Have a bunch of iid data: $\{(x_i,y_i)\}_{i=1}^n$ $x_i\in\mathbb{R}^d,\ y_i\in\{-1,1\}$ $P(Y=y|x,w)=\frac{1}{1+\exp(-u\,w^Tx)}$

$$\widehat{w}_{MLE} = \arg\max_{w} \prod_{i=1}^{n} P(y_i|x_i, w)$$

$$= \arg\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i x_i^T w)) = J(w)$$

Good news: $J(\mathbf{w})$ is convex function of \mathbf{w} , no local optima problems

Bad news: no closed-form solution to maximize $J(\mathbf{w})$

Good news: convex functions easy to optimize

Overfitting and Linear Separability

$$\arg\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_{i} x_{i}^{T} w))$$

When is this loss small?

Large parameters → **Overfitting**

When data is linearly separable, weights $\Rightarrow \infty$

Overfitting

Penalize high weights to prevent overfitting?

Regularized Conditional Log Likelihood

Add a penalty to avoid high weights/overfitting?:

$$\arg\min_{w,b} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i (x_i^T w + b)) \right) + \lambda ||w||_2^2$$

Be sure to not regularize the offset b!

