
CSE 446: Machine Learning

Assignment 4

Due: March 13th, 2020 9:30am

Instructions

Read all instructions in this section thoroughly.

Collaboration: Make certain that you understand the course collaboration policy, described on the course
website. You must complete this assignment individually; you are not allowed to collaborate with anyone
else. You may discuss the homework to understand the problems and the mathematics behind the various
learning algorithms, but you are not allowed to share problem solutions or your code with any
other students. You must also not consult code on the internet that is directly related to the programming
exercise.

You are also prohibited from posting any part of your solution to the internet, even after the course is
complete. Similarly, please don’t post this PDF file or the homework skeleton code to the internet.

Formatting: This assignment consists of two parts: a problem set and programming exercises.

For the problem set, you must write up your solutions electronically and submit it as a single PDF docu-
ment. Your problem set solutions must use proper mathematical formatting. For this reason, we strongly
encourage you to write up your responses using LATEX.

Your solutions to the programming exercises must be implemented in python, following the precise instruc-
tions included in Part 2. Several parts of the programming exercise ask you to create plots or describe
results; these should be included in the same PDF document that you create for the problem set.

Homework Template and Files to Get You Started: The homework zip file contains the skeleton
code and data sets that you will require for this assignment. Please read through the documentation
provided in ALL files before starting the assignment.

Citing Your Sources: Any sources of help that you consult while completing this assignment (other
students, textbooks, websites, etc.) *MUST* be noted in the your PDF document. This includes anyone
you briefly discussed the homework with. If you received help from the following sources, you do not need to
cite it: course instructor, course teaching assistants, course lecture notes, course textbooks or other course
materials.

Submitting Your Solution: You will be submitting only the following files, which you created or modified
as part of homework 4:

• hw4-UWNETID.pdf (a PDF of your homework 4 writeup)

• nn.py

• imageSegmentation.py

• momentum.py (optional)

Please follow the naming conventions exactly, and do not submit additional files including the test scripts
or data sets. Your PDF writeup of Homework w should be named hw4-UWNETID.pdf, where “UWNETID”
is your own UW netID (for example, my file would be named “hw4-bboots.pdf”). Please submit both the
PDF and the .py files through Gradescope.
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PART I: PROBLEM SET

Your solutions to the problems will be submitted as a single PDF document. Be certain that your problems
are well-numbered and that it is clear what your answers are.

1 Logical Functions with Neural Networks (15pts)

For each of the logical functions below, draw the neural network that computes the function, and give a truth
table showing the inputs, the value of the logical function, and the output of the neural network verifying
that the neural network is correct. Show your work for the computations of the neural network’s output.

(a) The NAND of two binary inputs, where NAND(x, y) = ¬(x ∧ y).

(b) The parity of three binary inputs. The parity is a boolean function with value 1 iff the input has an
odd number of ones. (Hint: Use your solution to (a) as a subnetwork.)

2 Backpropagation with Momentum (25pts)

[Adapted from Mitchell Sect. 4.5.2.1 and Ex. 4.7] One of the most common modifications to backpropagation
is to alter the weight update rule to make the weight update on the nth iteration partially dependent on the
update during the previous iteration. The modified weight update rule for the nth epoch is given by:
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where D
(l)
ij (n) is the average gradient computed at the nth epoch. The first few terms are exactly the same

as the standard weight update rule, the last term is new and is governed by a parameter 0 ≤ µ < 1 called
the momentum. Essentially, the momentum term includes some fraction of the update from the previous
epoch, which will enable the update to bounce out of small local minima or keep moving through flat regions
where the search would stop if there were no momentum. It also has the effect of gradually increasing the
step size of the search in regions where the gradient does not change, thereby speeding convergence.

Consider a two-layer feed-forward neural network with two inputs x1 and x2, one hidden unit h, and one

output unit y. This network has five weights
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threshold weight for unit z at level l. Initialize these weights to be (0.1, 0.1, 0.1, 0.1, 0.1) and give their values
after each of the first two training epochs of backpropagation with momentum.

Assume a learning rate of α = 0.3, momentum µ = 0.9, a square loss function (i.e., loss for each example is
(y − ŷ)2), and the following two training examples: (x1 = 1, x2 = 0, y = 1) and (x1 = 0, x2 = 1, y = 0).

Initialize these weights to be (0.1, 0.1, 0.1, 0.1, 0.1) and give their values after each of the first two training
epochs of backpropagation with momentum and the gradients you have calculated to do the update. You
should ignore the momentum term when performing the first epoch gradient update, but should use it for
the second epoch. You should update the parameters twice in total.

Be sure to include your intermediate computations and all your calculations for the partial derivatives for
full credit. You are encouraged to use Python to perform the numerical calculations, but if you choose to do
so, the only additional package you may choose to use is NumPy and you should include the code you used
for this problem in a file named as momentum.py and turn it in along with your programming part files.

3 Hyperbolic Tangent Neural Networks (15pts)

[Adapted from Bishop, Exercise 5.1] In a two-layer neural network (one hidden layer) with sigmoid activa-
tions, the outputs are given by:
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where σ(a) =
1

1 + exp(−a)
. This equation simply combines all the stages of the network into a single

equation. Instead of the sigmoid function, we could use hyperbolic tangent functions tanh(a) =
ea − e−a

ea + e−a
as

an activation function.

Consider the two-layer neural network with sigmoid activations described above. Show that there exists an
equivalent network, which computes exactly the same function, but with hidden unit activation functions
given by tanh(a). Define the parameters of your newly constructed network explicitly. You are allowed to
use an additional affine transformation on the output of your tanh network, since the range of tanh and σ
are different.

Hint: begin by re-writing the equation above with tanh hidden unit activations, then find the relation between
σ(a) and tanh(a), and show that the parameters of the two networks differ by linear transformations.

4 K-Means (12 pts)

Show 2 iterations of the k-means algorithm (k = 2) on the following one-dimensional data set:

Data: [ 4, 1, 9, 12, 6, 10, 2, 3, 9 ]

First iteration: cluster centers (randomly selected): 1, 6

Data assignment:

• Cluster 1: { 1, 2, 3 }
• Cluster 2: { 4, 9, 12, 6, 10, 9 }

(a) What are the cluster centers, and then the data assignments, that would be obtained for each of two
more iterations? Show your work.

(b) After your iterations, has the algorithm converged to a solution at this point, or not? How can you tell?

5 K-Means and Variance (6 pts)

(a) When using the K-Means clustering algorithm, we seek to minimize the variance of the solution. In
general, what happens to the variance of a partition as you increase the value of k (the number of
clusters) and why? State your answer in one sentence.

(b) For a dataset with n instances, what value of k can you always get a variance of 0? Why? State your
answer in one sentence.
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PART II: PROGRAMMING EXERCISES

For the programming part, you are only allowed to use NumPy and packages mentioned in this spec. If you
wish to use a particular function from some other package, please consult the course staff before you do so.

1 Neural Networks (50 pts)

Relevant Files in the Homework Skeleton
• nn.py
• digitsVisualization.tiff

• data/digitsX.dat

• data/digitsY.dat

In this problem, you will implement an artificial neural network (NN) classifier that learns via back-
propagation. Instead of choosing the architecture of the network at implementation time, you should im-
plement your neural net in a more general manner; the specific architecture of the network will be given to
the constructor. Recall from class that we can specify the architecture of a basic neural net via a vector s,
where each entry in the vector gives the number of nodes in that layer and the length of the vector is the
total number of layers in the network. We will assume that within each layer, each node receives input from
every other node in the previous layer.

Implement the neural network in a class called NeuralNet in nn.py, following the API given below:

• init (layers, learningRate, regParam, epsilon=0.12, numEpochs=100) : constructor

layers – a vector of L − 2 positive integers, where the number of layers in the network is L. The
value contained in layers[i] specifies the number of nodes in the ith hidden layer. Note that
the specification of layers is a bit different from the s vector; in particular, it does not include
s0 and sL−1, which are initialized from the training data in fit().

epsilon – one half the interval around zero for the initial weights (defaults to 0.12)

regParam – the regularization parameter

learningRate – the learning rate for back-propagation

numEpochs – the number of epochs for backpropagation

• fit(X,Y): train the neural network model via backpropagation
• predict(X): use the trained neural network model for prediction via forward propagation
• visualizeHiddenNodes(filename): (Extra Credit Only) outputs an image representing hidden layers

While implementing the neural net, I recommend you follow the steps outlined below.

1.1 Network Structure and Initialization

Complete the constructor, which simply saves the arguments for use later. Since the number of units in
the first and last layer are specified by the training data, we cannot initialize the network architecture and
weight matrices until fit(). After finishing init() , start writing fit().

The first thing you should do in fit() is to create all of the weight matrices Θ(1), . . . ,Θ(L−1). Initialize
all of the weights to be uniformly chosen from [−ε, ε], where ε is specified by the epsilon argument to the
constructor.1 Then, unroll the weight matrices Θ(1), . . . ,Θ(L−1) into a single long vector θ that contains all
parameters for the neural net.

1.2 Forward-propagation

Implement a private function to perform forward-propagation. This method will be useful for both back-
propagation and the predict() method. This private function should take in a vector of parameters (e.g.,
θ) for the neural network and an instance (or instances) and return the neural network’s outputs.

1According to Andrew Ng, an alternative (and effective) strategy for choosing ε is to choose a different value for each layer’s

weights, with the ε for Θ(l) as
√
6√

sl+sl+1
, where s is the vector containing the number of nodes in each layer.
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1.3 Backpropagation

Finish the fit() method to use backpropagation to minimize J(θ). Details for implementing backpropaga-
tion are in the lecture slides. At a minimum, you’ll need to compute J(θ) and ∂

∂θi
J(θ).

To confirm that your gradient computations are correct, I recommend that you implement the following
gradient checking procedure to numerically estimate the gradient. Form two vectors:

θi+c ← θ; then θi ← θi + c θi−c ← θ; then θi ← θi − c . (1)

In other words, θi+c (or θi−c) is the same as θ, but the ith element has been incremented (or decremented)
by c. Then, we can numerically estimate the gradient and verify that our gradient computations are correct
by confirming that ∂

∂θi
J(θ) ≈ J(θi+c)− J(θi−c)

2c
. (2)

Setting c = 10−4, you should find that the computed gradient and the estimated gradient should agree to at
least four significant digits.

This gradient checking procedure is very expensive, and so should only be used for small networks (small
numbers of parameters). Make absolutely certain to disable the gradient checking procedure once
you’re certain that your gradient implementation is correct. Use the gradient checking procedure
only for debugging purposes; be sure to disable it before running your learning algorithm.

Once your gradient computations are confirmed to be correct, finish fit() to run backpropagation for the
number of epochs specified in the constructor to train the neural net.

1.4 Complete the Prediction Function

Your prediction function should call the forward-propagation method with the neural net parameters θ
trained via backpropagation in fit().

1.5 Apply Your Neural Network to Digit Recognition

Write a test script named testNeuralNetDigits.py to apply your neural network classifier to the prob-
lem of digit recognition. The homework skeleton contains a data set of 5,000 20 × 20 digit images (see
digitsVisualization.tiff for a visualization). We can represent each image as a 400-dimensional vec-
tor of pixel intensities. The features for the digits are provided in the data/digitsX.dat file and their
corresponding labels are in data/digitsY.dat.

Train your neural network on the digits data with one hidden layer of 25 nodes over 100 epochs. Choose a
small value for the regularization parameter in the neural network (e.g., start with something like 0.001 and
tune it up or down as needed by hand – no need to tune it via cross-validation).

Tune the learning rate for the neural network. You should be able to get a training accuracy of approx-
imately 95.3% or higher if your implementation is correct (±1% due to random initialization). If you’re
having trouble obtaining this accuracy with only 100 epochs, try using more epochs. It is fine if your im-
plementation requires a few hundred more epochs to obtain higher accuracy. Report your optimal learning
rate, regularization parameter, and the maximum training performance you obtained in your PDF writeup.

1.6 Visualizing the Hidden Layers

Complete the visualizeHiddenNodes(filename) function to visualize the hidden units in the network. For
the neural network you trained above, note that the ith row of Θ(1) is a 401-dimensional vector that specifies
the parameters for the ith hidden unit. Discarding the bias term yields a 400-dimensional vector that we can
reshape into an 20× 20 matrix via the numpy.reshape command. If we remap2 the values of this matrix to
lie in 0 . . . 255, we can visualize the weights as a greyscale image.

2I suggest you either map -1 to 0 and +1 to 255, or the min value over all units to 0 and the max value over all units to 255
– whichever gives you the nicer picture.
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Use the Python Image Library (you might find it useful to consult
http://en.wikibooks.org/wiki/Python_Imaging_Library). to create
an image that visualizes all of the hidden layers. Separate the layers into
blocks (e.g., you can visualize a 25 unit layer as an 5 × 5 grid, where
each grid entry is the 20 × 20 greyscale image). You might find it useful
to consult http://en.wikibooks.org/wiki/Python_Imaging_Library/
Editing_Pixels. Save this image to the filename given as an argument
to visualizeHiddenNodes().

You should find that the hidden units correspond to different stroke de-
tectors and other patterns in the input. For an example of the hidden unit
visualization, see the image to the right. Yours will likely look slightly
different from this one due to randomization. Include your output image
visualizing the hidden layers of your network in your PDF writeup.

2 Image Segmentation using K-Means (30
pts)

In the problem, you will apply K-Means to image segmentation. Write a program named imageSegmentation.py

that reads in an image, segments that image using K-Means clustering as described below, and outputs the
new segmented image. Your program must support the following command line arguments:

python imageSegmentation.py K inputImageFilename outputImageFilename

The first argument K is an integer greater than 2 that specifies the number of clusters, inputImageFilename
is the filename of the input image, and outputImageFilename is the filename to write the output image.
For example, we might call your program via:

python imageSegmentation.py 24 newyorkcity.jpg nyc-segmented.jpg

Choose several nice natural images, such as a farmhouse against a blue sky, or a city scene. First write code
to load the image using the Python Image Library, which supports a wide variety of image file formats, and
will automatically determine the filetype based on the file extension. (We will test your program with .jpg
and .png files, so make certain to test your program with those types.)

We can think of an image as being represented as a 3-D matrix of size imageWidth × imageHeight × 3. For
each location in the image (i, j), the matrix contains three values for the red, green, and blue components of
the pixels. We will use these pixel values for clustering. In addition to the color values (rp, gp, bp) for pixel
p, we will also use the x,y coordinates (ip, jp) as features. In particular, we can represent each pixel p as a
five-dimensional data vector xp =

[
rp gp bp ip jp

]
.

Complete the program via the following steps:

• Convert the input image into a data set with five features, as described above. To improve results, you
should also standardize the values of each feature in the data set.

• Implement your own version of K-Means and use it to cluster the data (i.e. the features for each pixel)
into K clusters. If a cluster is ever empty during the procedure, assign a random data point to it. Use
random initializations for the cluster centers, and iterate until the centroids converge.

• Use the cluster centers to generate the segmented image by replacing each data point’s color values
with the closest center. For example, xp becomes

x̂p =
[
rC(p) gC(p) bC(p) ip jp

]
,

where C(p) is the cluster to which xp belongs and (rC(p), gC(p), bC(p)) are the corresponding RGB values
of that cluster’s centroid. Note specifically that we’re only replacing the color values of each instance
with its centroid’s colors, we’re not changing the (i,j) coordinates of that instance.
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• Create an output image the same size as the input image. Then fill in the color values of each pixel
of the image based on the x̂p’s. For example, x̂p informs us that the pixel at (ip, jp) should have color
(rC(p), gC(p), bC(p)). Note that you also have to undo the feature standardization at this point (just
invert the standardization equation by solving for the original value given the standardized value).

• Output the resulting image to the file outputImageFilename.

• In your PDF writeup, include three different examples of an original image alongside the resulting
segmented image.

The result of this process is called an over-segmented image. It is the first step to building such systems as
this: http://make3d.cs.cornell.edu/. Later steps would piece these segments together into objects.
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