
CSE 446: Machine Learning

Assignment 3

Due: March 4th, 2020 9:30am

Read all instructions in this section thoroughly.

Collaboration: Make certain that you understand the course collaboration policy, described on the course
website. You must complete this assignment individually; you are not allowed to collaborate with anyone
else. You may discuss the homework to understand the problems and the mathematics behind the various
learning algorithms, but you are not allowed to share problem solutions or your code with any
other students. You must also not consult code on the internet that is directly related to the programming
exercise.

You are also prohibited from posting any part of your solution to the internet, even after the course is
complete. Similarly, please don’t post this PDF file or the homework skeleton code to the internet.

Formatting: This assignment consists of two parts: a problem set and programming exercises.

For the problem set, you must write up your solutions electronically and submit it as a single PDF docu-
ment. Your problem set solutions must use proper mathematical formatting. For this reason, we strongly
encourage you to write up your responses using LATEX.

Your solutions to the programming exercises must be implemented in python, following the precise instruc-
tions included in Part 2. Several parts of the programming exercise ask you to create plots or describe
results; these should be included in the same PDF document that you create for the problem set.

Homework Template and Files to Get You Started: The homework zip file contains the skeleton
code and data sets that you will require for this assignment. Please read through the documentation
provided in ALL files before starting the assignment.

Citing Your Sources: Any sources of help that you consult while completing this assignment (other
students, textbooks, websites, etc.) *MUST* be noted in the your PDF document. This includes anyone
you briefly discussed the homework with. If you received help from the following sources, you do not need to
cite it: course instructor, course teaching assistants, course lecture notes, course textbooks or other course
materials.

Submitting Your Solution: You will be submitting only the following files, which you created or modified
as part of homework 3:

• hw3-UWNETID.pdf (a PDF of your homework 3 writeup)

• boostedDT.py

• bestClassifier.py

• predictions-BestClassifier.dat

• predictions-BoostedDT.dat

• naiveBayes.py

Please follow the naming conventions exactly, and do not submit additional files including the test scripts
or data sets. Your PDF writeup of Homework w should be named hww-UWNETID.pdf, where “UWNETID”
is your own UW netID (for example, my file would be named “hw3-bboots.pdf”). Please submit both the
PDF and the .py files through Gradescope.

1



PART I: PROBLEM SET

Your solutions to the problems will be submitted as a single PDF document. Be certain that your problems
are well-numbered and that it is clear what your answers are.

1 Kernels (10pts)

Suppose that our inputs are one dimensional and that our feature map is infinite dimensional: φ(x) is a
vector whose ith component is

1√
i!
e−

x2

2 xi.

for all nonnegative integers i. (Thus, φ is an infinite dimensional vector.) Show that K(x, x′) = e−
(x−x′)2

2 is
a kernel function for this feature map, i.e.,

φ(x) · φ(x′) = e−
(x−x′)2

2 .

Hint: Use the Taylor expansion of ez. (This is the one dimensional version of the Gaussian (RBF) kernel).

2 Probability decision boundary (5pts)

Consider a case where we have learned a conditional probability distribution P (y | x). Suppose there are
only two classes, and let p0 = P (y = 0 | x) and let p1 = P (y = 1 | x), and additionally assume that
P (p1 < q) = q for any value q ∈ [0, 1]. A loss matrix gives the cost that is incurred for each element of the
confusion matrix. (E.g., true positives might cost nothing, but a false positive might cost us $10.) Consider
the following loss matrix:

y = 0 (true) y = 1 (true)
ŷ = 0 (predicted) 0 10
ŷ = 1 (predicted) 5 0

(a) First we prove that the decision ŷ that minimizes the expected loss is equivalent to setting a probability
threshold θ and predicting ŷ = 0 if p1 < θ and ŷ = 1 if p1 ≥ θ.
Proof:

A decision rule is a mapping from p1 ∈ [0, 1] to ŷ ∈ {0, 1}. First we observe that, our decision being
threshold as above, namely,

ŷ = 0 if p1 < θ and ŷ = 1 if p1 ≥ θ
is equivalent with (if and only if), for any pairs of θ1, θ2 ∈ [0, 1] such that θ1 < θ2, it is never the case
that

ŷ = 1 if p1 = θ1 and ŷ = 0 if p1 = θ2

Now we are just left to show that for any arbitrary pair θ1, θ2, there always exists a decision rule that
has less expected loss than

rule 1: ŷ = 1 if p1 = θ1; ŷ = 0 if p1 = θ2; ŷ = f(p1) if p1 6= θ1 and p1 6= θ2
where my f is any mapping from p1 ∈ [0, 1] to ŷ ∈ {0, 1} except on the two points.

First we state two alternative decision rules:
rule 2: ŷ = 0 if p1 = θ1; ŷ = 0 if p1 = θ2; ŷ = f(p1) if p1 6= θ1 and p1 6= θ2
rule 3: ŷ = 1 if p1 = θ1; ŷ = 1 if p1 = θ2; ŷ = f(p1) if p1 6= θ1 and p1 6= θ2

where both of the rules above shares f from rule 1, meaning they will do exactly the same with rule 1
except on the two points, θ1 and θ2.

Now, if we consider the costs on only the two points, we get the following:
rule 1: 5(1− θ1) when p1 = θ1 and 10θ2 when p1 = θ2
rule 2: 10θ1 when p1 = θ1 and 10θ2 when p1 = θ2
rule 3: 5(1− θ1) when p1 = θ1 and 5(1− θ2) when p1 = θ2

2



We now claim that at least one of rule 2 and rule 3 has a lower cost than rule 1, which is equivalent
from saying, if θ1 < θ2, then either 5(1− θ1) > 10θ1 or 10θ2 > 5(1− θ2), or both.

We prove this by contradiction. The negation of the above statement says, if θ1 < θ2, then 5(1− θ1) ≤
10θ1 and 10θ2 ≤ 5(1− θ2). However, 5(1− θ1) ≤ 10θ1 ⇐⇒ θ1 ≥ 1

3 and 10θ2 ≤ 5(1− θ2) ⇐⇒ θ2 ≤ 1
3 ,

which directly contradicts our assumption that θ1 < θ2. Therefore, the statement from above must be
true. This completes the proof.

(b) What is the threshold for this loss matrix?

3 Double counting the evidence (20pts)

Consider a problem in which the binary class label Y ∈ {T, F} and each training example x has 2 binary
attributes X1, X2 ∈ {T, F}.
Let the class prior be p(Y = T ) = 0.5 and p(X1 = T | Y = T ) = 0.8 and p(X2 = T | Y = T ) = 0.5. Likewise,
p(X1 = F | Y = F ) = 0.7 and p(X2 = F | Y = F ) = 0.9. Attribute X1 provides slightly stronger evidence
about the class label than X2.

Assume X1 and X2 are truly independent given Y . Write down the naive Bayes decision rule.

(a) What is the expected error rate of naive Bayes if it uses only attribute X1? What if it uses only X2?

The expected error rate is the probability that each class generates an observation where the decision
rule is incorrect. If Y is the true class label, let Ŷ (X1, X2) be the predicted class label. Then the
expected error rate is EX1,X2,Y [1{Y 6= Ŷ (X1, X2)}], where 1{·} is the indicator function that takes in
an event, returns 1 if it’s true and 0 otherwise.

(b) Show that if naive Bayes uses both attributes, X1 and X2, the error rate is 0.235, which is better than
if using only a single attribute (X1 or X2).

(c) Now suppose that we create new attribute X3 that is an exact copy of X2. So for every training example,
attributes X2 and X3 have the same value. What is the expected error of naive Bayes now?

(d) Briefly explain what is happening with naive Bayes (2 sentences max).

(e) Does logistic regression suffer from the same problem? Briefly explain why (2 sentences max).

3



4 Reject option (10pts)

In many applications, the classifier is allowed to “reject” a test example rather than classifying it into one of
the classes. Consider, for example, a case in which the cost of misclassification is $10 but the cost of having
a human manually make the decision is only $3. We can formulate this as the following loss matrix:

y = 0 (true) y = 1 (true)
ŷ = 0 (predicted) 0 10
ŷ = 1 (predicted) 10 0
reject 3 3

(a) Suppose p(y = 1|x) = 0.2. Which decision minimizes the expected loss?

(b) Now suppose p(y = 1|x) = 0.4. Now which decision minimizes the expected loss?

(c) Observe that in cases such as this there will be two thresholds, θ0 and θ1, such that the optimal decision
is to predict 0 if p1 < θ0, reject if θ0 ≤ p1 ≤ θ1, and predict 1 if p1 > θ1. This problem no longer
requires you to do anything, you may just assume the statement is true now. The proof
of the statement should be similar to the proof in 2(a).

(d) What are the values of these thresholds for the following loss matrix?

y = 0 (true) y = 1 (true)
ŷ = 0 (predicted) 0 10
ŷ = 1 (predicted) 5 0
reject 3 3

PART II: PROGRAMMING EXERCISES

1 Challenge: Generalizing to Unseen Data (40 pts)

One of the most difficult aspects of machine learning is that your classifier must generalize well to unseen
data. In this exercise, we are supplying you with labeled training data and unlabeled test data. Specifically,
you will not have access to the labels for the test data, which we will use to grade your assignment. You
will fit the best model that you can to the given data and then use that model to predict labels for the test
data. It is these predicted labels that you will submit, and we will grade your submission based on your test
accuracy (relative to the best performance you should be able to obtain). Each instance belongs to one of
nine classes, named ’1’ . . . ’9’. We will not provide any further information on the data set.

You will submit two sets of predictions – one based on a boosted decision tree classifier (which you will
write), and another set of predictions based on whatever machine learning method you like – you are free to
choose any classification method. We will compute your test accuracy based on your predicted labels for the
test data and the true test labels. Note also that we will not be providing any feedback on your predictions
or your test accuracy when you submit your assignment, so you must do your best without feedback on your
test performance.

Relevant Files in the Homework Skeleton1

• boostedDT.py

• test boostedDT.py

• data/challengeTrainLabeled.dat: labeled training data for the challenge

• data/challengeTestUnlabeled.dat: unlabeled testing data for the challenge
1Bold text indicates files that you will need to complete; you should not need to modify any of the other files.

4



1.1 The Boosted Decision Tree Classifier

In class, we mentioned that boosted decision trees have been shown to be one of the best “out-of-the-box”
classifiers. (That is, if you know nothing about the data set and can’t do parameter tuning, they will likely
work quite well.) Boosting allows the decision trees to represent a much more complex decision surface than
a single decision tree.

Write a class that implements a boosted decision tree classifier. Your implementation may rely on the
decision tree classifier already provided in scikit learn (sklearn.tree.DecisionTreeClassifier), but you
must implement the boosting process yourself. (The scikit learn module actually provides boosting as a
meta-classifier, but you may not use it in your implementation.) Each decision tree in the ensemble should
be limited to a maximum depth as specified in the BoostedDT constructor. You can configure the maximum
depth of the tree via the max depth argument to the DecisionTreeClassifier constructor.

Your class must implement the following API:

• init (numBoostingIters = 100, maxTreeDepth = 3): the constructor, which takes in the num-
ber of boosting iterations (default value: 100) and the maximum depth of the member decision trees
(default: 3)

• fit(X,y): train the classifier from labeled data (X, y)

• predict(X): return an array of n predictions for each of n rows of X

Note that these methods have already been defined correctly for you in boostedDT.py; be very careful not
to change the API. You should configure your boosted decision tree classifier to be the best “out-of-the-box”
classifier you can; you may not modify the constructor to take in additional parameters (e.g., to configure
the individual decision trees).

There is one additional change you need to make to AdaBoost beyond the algorithm described in class.
AdaBoost by default only works with binary classes, but in this case, we have a multi-class classification
problem. One variant of AdaBoost, called AdaBoost-SAMME, easily adapts AdaBoost to multiple classes.
Instead of using the equation βt = 1

2 ln
(
1−ε
ε

)
in AdaBoost, you should use the AdaBoost-SAMME equation

βt =
1

2

(
ln

(
1− ε
ε

)
+ ln(K − 1)

)
,

where K is the total number of classes. This will force βt ≥ 0 as long as the classifier is no worse than
random guessing. Note that when K = 2, AdaBoost-SAMME reduces to AdaBoost. For further information
on SAMME, see http://web.stanford.edu/~hastie/Papers/samme.pdf.

Test your implementation by running test boostedDT.py, which compares your BoostedDT model to a
regular decision tree on the iris data with a 50:50 training/testing split. You should see that your BoostedDT
model is able to obtain 97% accuracy vs the 96% accuracy of regular decision trees. Make certain that your
implementation works correctly before moving on to the next part.

Once your boosted decision tree is working, train your BoostedDT on the labeled data available in the file
data/challengeTrainLabeled.dat. The class labels are specified in the last column of data. You may
tune the number of boosting iterations and maximum tree depth however you like. Then, use the trained
BoostedDT classifier to predict a label y ∈ {1, . . . , 9} for each unlabeled instance in data/challengeTestUnlabeled.dat.
Your implementation should output a comma-separated list of predicted labels, such as

1, 2, 1, 9, 4, 1, 3, 1, 5, 3, 4, 2, 8, 3, 1, 6, 3, ...

Be very careful not to shuffle the instances in data/challengeTestUnlabeled.dat; the first predicted label
should correspond to the first unlabeled instance in the testing data. The number of predictions should
match the number of unlabeled test instances.

Record the expected accuracy of your model in the PDF file. Finally, also save the comma-separated list into
a text file named predictions-BoostedDT.dat; this file should have exactly one line of text that contains
the list of predictions.

5

http://web.stanford.edu/~hastie/Papers/samme.pdf


1.2 Training the Best Classifier

Now, train the very best classifier for the challenge data, and use that classifier to output a second vector
of predictions for the test instances. You may use any machine learning algorithm you like, and may tune
it any way you wish. You may use the method and helper functions built into scikit learn; you do not need
to implement the method yourself, but may if you wish. If you don’t want to use scikit learn, you may
use any other machine learning software you wish. If you can think of a way that the unlabeled data in
data/challengeTestUnlabeled.dat would be useful during the training process, you are welcome to let
your classifier have access to it during training.

Please submit your implementation in a file called bestClassifier.py, along with the predictions.

Once again, use your trained model to output a comma-separated list of predicted labels for the unlabeled
instances in data/challengeTestUnlabeled.dat. Again, be careful not to shuffle the test instances; the
order of the predictions must match the order of the test instances.

Record the expected accuracy of your model in your PDF file. Also save the comma-separated list into a
text file named predictions-BestClassifier.dat; this file should have one line of text that contains the
list of predictions.

Write a brief paragraph (6–8 sentences max) describing the best machine learning classifier you found, its
optimal parameter settings (if any), and how you trained the model. Include that paragraph in your PDF
writeup.

2 Naive Bayes (35 pts)

In this implementation exercise, you will implement naive Bayes for batch learning.

Relevant Files in the Homework Skeleton2

• naiveBayes.py
• test naiveBayes.py

• test onlineNaiveBayes.py

2.1 Implementing Batch Naive Bayes

Implement a multinomial naive Bayes classifier in the NaiveBayes class in naiveBayes.py. Your imple-
mentation should support Laplace smoothing. Whether or not to use Laplace smoothing is controlled via
an argument to the constructor; Laplace smoothing is enabled by default. Your implementation must follow
the API below. (Note that all matrices are actually 2D numpy arrays in the implementation.)

• init(useLaplaceSmoothing=True) : constructor
• fit(X,Y): method to train the naive Bayes model
• predict(X): method to use the trained naive Bayes model for prediction
• predictProbs(X): outputs a matrix of predicted posterior class probabilities

The training data for multinomial naive Bayes is specified as feature counts: X[i,j] is the number of times
feature j occurs in instance i (or you can think of it as that instance i is characterized by a particular
real-valued amount of feature j).

We are here using the multinomial distribution. Suppose our dataset has d features and K classes. Then the
multinomial distribution for a particular sample (x, y), where xi ∈ N for i = 1, . . . , d and y ∈ {1, 2, . . . ,K},
is

P (x, y) = P (x|y)P (y) =
(
∑
k xk)!

x1!x2! · · ·xd!
px1
y1p

x2
y2 · · · p

xd

yd︸ ︷︷ ︸
P (x|y)

·P (y).

The naive Bayes assumption (that each instance is independent given the class label) is used in the sense that
that we are assuming the generative process is (1) first picking a class y according to the label distribution
P (Y ) (in this case, a categorical distribution) and then (2) generate a sequence of features, independently,

2Bold text indicates files or functions that you will need to complete; you should not need to modify any of the other files.

6



according to a multinomial distribution conditioned on the class y: (py1, py2, . . . , pyd) where py1 + py2 +
· · ·+ pyd = 1. What you are given is the count of each feature generated by this process stored in a vector
(x1, x2, . . . , xd). This is a useful model for predicting, say, document classes, where d is size of vocabulary
and c is number of document classes.

The MLE parameter estimation for this naive Bayes probabilistic model is then

P̂ (y) =
#samples with label y

#total samples
and

p̂yi =
total occurrences of feature i in samples with label y

total occurrences of all features with label y
.

When using Laplace smoothing, we estimate pyi with

p̂yi =
(total occurrences of feature i in samples with label y) + 1

(total occurrences of all features with label y) + d
.

During prediction, given feature count vector x, we estimate label y’s conditional probability with

P̂ (y|x) ∝ P̂ (y)p̂x1
y1p̂

x2
y2 · · · p̂

xd

yd

up to normalization. You might want to implement the equation above with summation of log probabilities
for better numerical stability. If you choose to do so, you would need another numerical trick below. After
obtaining the log probabilities for each classes: z = (log P̂ (y = 1|x), log P̂ (y = 2|x), . . . , log P̂ (y = K|x)),
the actual probability distribution to be output is

P̂ (y = i|x) =
ezi

ez1 + ez2 + · · ·+ ezK

=
ezi

ez1 + ez2 + · · ·+ ezK
· e
−maxi zi

e−maxi zi

=
ezi−maxi zi

ez1−maxi zi + ez2−maxi zi + · · ·+ ezK−maxi zi
.

You also need to subtract maxi zi from the log probabilities for better numerical stability. (Note: the function
above is called the softmax function and subtracting the max from the log probabilities before exponentiating
is a common numerical trick.)

The predictProbs(X) function takes in a matrix X of n instances and outputs an n×K matrix of posterior
probabilities. Each row i of the returned matrix represents the posterior probability distribution over the K
classes for the ith training instance. (Note that each row of the returned matrix will sum to 1.)

Run test naiveBayes.py to test your implementation. Your naive Bayes should achieve ∼89% accuracy.

2.2 Online Learning with Naive Bayes

Once your naive Bayes model is working correctly, extend it to learn online by completing the OnlineNaiveBayes
class in naiveBayes.py. So far, we have only examined batch learning methods, which process the entire
training set in one batch to produce the model. In contrast, online learning methods receive data instances
consecutively, updating the model each time. In most cases, after having seen the same set of training
instances, the online learning algorithm will produce the same model as the batch learning algorithm, but it
will have only seen the instances one at a time.

Essentially, the idea is that the .fit() method will be called multiple times, once for each training instance.
At any time, we can call the .predict() method to use the classifier to predict labels for new instances.
For example,

. . .
model = OnlineNaiveBayes ( )
model . f i t ( Xtrain [ 1 , : ] , y t r a in [ 1 ] )
model . f i t ( Xtrain [ 2 , : ] , y t r a in [ 2 ] )
print model . p r e d i c t ( Xtest )
model . f i t ( Xtrain [ 3 , : ] , y t r a in [ 3 ] )
print model . p r e d i c t ( Xtest )
. . .

7

https://en.wikipedia.org/wiki/Softmax_function


Unlike in the batch learning setting, calling .fit() does not overwrite the original model, but instead it
updates it with the new training instance.

For convenience, we will actually write a hybrid approach, in which one or more training instances can be
fed into .fit(). This form will support different types of training paradigms: (a) batch learning, where
.fit() is called once with all training instances, (b) online learning, where .fit() is called numerous times,
once for each training instance, and (c) a hybrid approach where .fit() is called several times, each time
with a few training instances.

Naive Bayes is particularly easy to convert for online learning, since all we’re doing is updating counts in
each CPT. The only tricks are figuring out how to handle Laplace smoothing as you go and how to add
instances with never-before-seen labels online! (You must figure those out yourself).

Your implementation must follow the same API as NaiveBayes. Although you are permitted to implement
it entirely separately (e.g., duplicate NaiveBayes and edit it to learn online), it might be a better idea to
implement it as a subclass of your Naive Bayes classifier. That way, if you discover any issues in your naive
Bayes classifier, you only need to edit NaiveBayes to fix it in both the batch and online versions of the
classifier. Also, note that certain aspects, like the .predict() method, do not necessarily need to change
between the two versions.

Run test onlineNaiveBayes.py to test your implementation and compare it against your standard naive
Bayes classifier. You should see that the two algorithms are able to achieve the same performance.

8


	Kernels (10pts)
	Probability decision boundary (5pts)
	Double counting the evidence (20pts)
	Reject option (10pts)

	Challenge: Generalizing to Unseen Data (40 pts)
	The Boosted Decision Tree Classifier
	Training the Best Classifier


	Naive Bayes (35 pts)
	Implementing Batch Naive Bayes
	Online Learning with Naive Bayes 


