
CSE 446: Machine Learning

Assignment 2

Due: February 19th, 2020 9:30am

Read all instructions in this section thoroughly.

Collaboration: Make certain that you understand the course collaboration policy, described on the course
website. You must complete this assignment individually; you are not allowed to collaborate with anyone
else. You may discuss the homework to understand the problems and the mathematics behind the various
learning algorithms, but you are not allowed to share problem solutions or your code with any
other students. You must also not consult code on the internet that is directly related to the programming
exercise.

You are also prohibited from posting any part of your solution to the internet, even after the course is
complete. Similarly, please don’t post this PDF file or the homework skeleton code to the internet.

Formatting: This assignment consists of two parts: a problem set and programming exercises.

For the problem set, you must write up your solutions electronically and submit it as a single PDF docu-
ment. Your problem set solutions must use proper mathematical formatting. For this reason, we strongly
encourage you to write up your responses using LATEX.

Your solutions to the programming exercises must be implemented in python, following the precise instruc-
tions included in Part 2. Several parts of the programming exercise ask you to create plots or describe
results; these should be included in the same PDF document that you create for the problem set.

Homework Template and Files to Get You Started: The homework zip file contains the skeleton
code and data sets that you will require for this assignment. Please read through the documentation
provided in ALL files before starting the assignment.

Citing Your Sources: Any sources of help that you consult while completing this assignment (other
students, textbooks, websites, etc.) *MUST* be noted in the your PDF document. This includes anyone
you briefly discussed the homework with. If you received help from the following sources, you do not need to
cite it: course instructor, course teaching assistants, course lecture notes, course textbooks or other course
materials.

Submitting Your Solution: You will be submitting only the following files, which you created or modified
as part of homework 1:

• hw2-UWNETID.pdf (a PDF of your homework 1 writeup)

• polyreg.py

• logreg.py

• mapFeature.py

• svmKernels.py

Please follow the naming conventions exactly, and do not submit additional files including the test scripts
or data sets. Your PDF writeup of Homework w should be named hww-UWNETID.pdf, where “UWNETID”
is your own UW netID (for example, my file would be named “hw1-bboots.pdf”). Please submit both the
PDF and the .py files through Gradescope.

1

PART I: PROBLEM SET

Your solutions to the problems will be submitted as a single PDF document. Be certain that your problems
are well-numbered and that it is clear what your answers are.

1 Maximum Likelihood Estimation (MLE) (15 pts)

1. You’re a Seahawks fan, and the team is six weeks into its season. The number touchdowns scored in each
game so far are given below:

[1, 3, 3, 0, 1, 5].

Let’s call these scores x1, . . . , x6. Based on your (assumed iid) data, you’d like to build a model to understand
how many touchdowns the Seahaws are likely to score in their next game. You decide to model the number
of touchdowns scored per game using a Poisson distribution. The Poisson distribution with parameter λ
assigns every non-negative integer x = 0, 1, 2, . . . a probability given by

Poi(x|λ) = e−λ
λx

x!
.

So, for example, if λ = 1.5, then the probability that the Seahawks score 2 touchdowns in their next game

is e−1.5 × 1.52

2! ≈ 0.25. To check your understanding of the Poisson, make sure you have a sense of whether
raising λ will mean more touchdowns in general, or fewer.

a) Derive an expression for the maximum-likelihood estimate of the parameter λ governing the Poisson
distribution, in terms of your touchdown counts x1, . . . , x6. (Hint: remember that the log of the likelihood
has the same maximum as the likelihood function itself.)

b) Given the touchdown counts, what is your numerical estimate of λ?

2 Fitting an SVM by Hand (15 pts)

[Adapted from Murphy & Jaakkola] Consider a dataset with only 2 points in 1D: (x1 = 0, y1 = −1) and
(x2 =

√
2, y2 = +1). Consider mapping each point to 3D using the feature vector φ(x) = [1,

√
2x, x2]ᵀ (i.e.,

use a 2nd-order polynomial kernel). The maximum margin classifier has the form

min ‖w‖22 s.t. (1)

y1(wᵀφ(x1) + w0) ≥ 1 (2)

y2(wᵀφ(x2) + w0) ≥ 1 (3)

a.) Write down a vector that is parallel to the optimal vector w. (Hint: recall that w is orthogonal to the
decision boundary between the two points in 3D space.)

b.) What is the value of the margin that is achieved by w? (Hint: think about the geometry of two points
in space, with a line separating one from the other.)

c.) Solve for w, using the fact that the margin is equal to 2
‖w‖2 .

d.) Solve for w0, using your value of w and the two constraints (2)–(3) for the max margin classifier.

e.) Write down the form of the discriminant h(x) = w0 + wᵀφ(x) as an explicit function in terms of x.

2

PART II: PROGRAMMING EXERCISES

1 Polynomial Regression (25 pts)

In the previous assignment, you implemented linear regression. In the first implementation exercise, you will
modify your implementation to fit a polynomial model and explore the bias/variance tradeoff.

Relevant Files in Homework Skeleton1

• polyreg.py
• linreg closedform.py

• test polyreg univariate.py

• test polyreg learningCurve.py

• data/polydata.dat

1.1 Implementing Polynomial Regression

Recall that polynomial regression learns a function hθ(x) = θ0 + θ1x + θ2x
2 + . . . + θdx

d. In this case, d
represents the polynomial’s degree. We can equivalently write this in the form of a linear model

hθ(x) = θ0φ0(x) + θ1φ1(x) + θ2φ2(x) + . . .+ θdφd(x) , (4)

using the basis expansion that φj(x) = xj . Notice that, with this basis expansion, we obtain a linear model
where the features are various powers of the single univariate x. We’re still solving a linear regression
problem, but are fitting a polynomial function of the input.

Implement regularized polynomial regression in polyreg.py. You may implement it however you like, using
gradient descent or a closed-form solution. However, I would recommend the closed-form solution since the
data sets are small; for this reason, we’ve included an example closed-form implementation of linear regression
in linreg closedform.py (you are welcome to build upon this implementation, but make CERTAIN you
understand it, since you’ll need to change several lines of it). You are also welcome to build upon your
implementation from the previous assignment, but you must follow the API below. Note that all matrices
are actually 2D numpy arrays in the implementation.

• init (degree=1, regLambda=1E-8) : constructor with arguments of d and λ
• fit(X,Y): method to train the polynomial regression model
• predict(X): method to use the trained polynomial regression model for prediction
• polyfeatures(X, degree): expands the given n × 1 matrix X into an n × d matrix of polynomial

features of degree d. Note that the returned matrix will not include the zero-th power.

Note that the polyfeatures(X, degree) function maps the original univariate data into its higher order
powers. Specifically, X will be an n×1 matrix (X ∈ Rn×1) and this function will return the polynomial expan-
sion of this data, a n×d matrix. Note that this function will not add in the zero-th order feature (i.e., x0 = 1).
You should add the x0 feature separately, outside of this function, before training the model. By not including
the x0 column in the matrix returned by polyfeatures(), this allows the polyfeatures function to be more

Figure 1: Fit of polynomial regression with
λ = 0 and d = 8

general, so it could be applied to multi-variate data as well.
(If it did add the x0 feature, we’d end up with multiple
columns of 1’s for multivariate data.)

Also, notice that the resulting features will be badly scaled
if we use them in raw form. For example, with a polyno-
mial of degree d = 8 and x = 20, the basis expansion yields
x1 = 20 while x8 = 2.56 × 1010 – an absolutely huge differ-
ence in range. Consequently, we will need to standardize the
data before solving linear regression. Standardize the data in
fit() after you perform the polynomial feature expansion.
You’ll need to apply the same standardization transforma-
tion in predict() before you apply it to new data.

Run test polyreg univariate.py to test your implemen-
tation, which will plot the learned function. In this case, the

1Bold text indicates files or functions that you will need to complete; you should not need to modify any of the other files.

3

script fits a polynomial of degree d = 8 with no regularization λ = 0. From the plot, we see that the
function fits the data well, but will not generalize well to new data points. Try increasing the amount of
regularization, and examine the resulting effect on the function.

1.2 Examine the Bias-Variance Tradeoff through Learning Curves

Learning curves provide a valuable mechanism for evaluating the bias-variance tradeoff. Implement the
learningCurve() function in polyreg.py to compute the learning curves for a given training/test set.
The learningCurve(Xtrain, ytrain, Xtest, ytest, degree, regLambda) function should take in the
training data (Xtrain, ytrain), the testing data (Xtest, ytest), and values for the polynomial degree d
and regularization parameter λ.

The function should return two arrays, errorTrain (the array of training errors) and errorTest (the array
of testing errors). The ith index (start from 0) of each array should return the training error (or testing
error) for learning with i + 1 training instances. Note that the 0th index actually won’t matter, since we
typically start displaying the learning curves with two or more instances.

When computing the learning curves, you should learn on Xtrain[0:i] for i = 1, . . . ,numInstances(Xtrain)+
1, each time computing the testing error over the entire test set. There is no need to shuffle the training data,
or to average the error over multiple trials – just produce the learning curves for the given training/testing
sets with the instances in their given order. Recall that the error for regression problems is given by

1

n

n∑
i=1

(hθ(xi)− yi)2 . (5)

Once the function is written to compute the learning curves, run the test polyreg learningCurve.py

script to plot the learning curves for various values of λ and d. You should see plots similar to the following:

Notice the following:

• The y-axis is using a log-scale and the ranges of the y-scale are all different for the plots. The dashed
black line indicates the y = 1 line as a point of reference between the plots.

4

• The plot of the unregularized model with d = 1 shows poor training error, indicating a high bias (i.e.,
it is a standard univariate linear regression fit).

• The plot of the unregularized model (λ = 0) with d = 8 shows that the training error is low, but that
the testing error is high. There is a huge gap between the training and testing errors caused by the
model overfitting the training data, indicating a high variance problem.

• As the regularization parameter increases (e.g., λ = 1) with d = 8, we see that the gap between the
training and testing error narrows, with both the training and testing errors converging to a low value.
We can see that the model fits the data well and generalizes well, and therefore does not have either a
high bias or a high variance problem. Effectively, it has a good tradeoff between bias and variance.

• Once the regularization parameter is too high (λ = 100), we see that the training and testing errors
are once again high, indicating a poor fit. Effectively, there is too much regularization, resulting in
high bias.

Make absolutely certain that you understand these observations, and how they relate to the learning curve
plots. In practice, we can choose the value for λ via cross-validation to achieve the best bias-variance tradeoff.

5

2 Logistic Regression (35 points)

Now that we’ve implemented a basic regression model using gradient descent, we will use a similar technique
to implement the logistic regression classifier.

Relevant Files in Homework Skeleton2

• test logreg1.py - python script to test logistic regression

• data/data1.dat - Student admissions prediction data, nearly linearly separable

• logreg.py: implements the LogisticRegression class

2.1 Implementation

Implement regularized logistic regression by completing the LogisticRegression class in logreg.py. Your
class must implement the following API:

• init (alpha, regLambda, epsilon, maxNumIters): the constructor, which takes in α, λ, ε, and
maxNumIters as arguments

• fit(X,y): train the classifier from labeled data (X, y)

• predict(X): return a vector of n predictions for each of n rows of X

• computeCost(theta, X, y, regLambda): computes the logistic regression objective function for the
given values of θ, X, y, and λ (“lambda” is a keyword in python, so we must call the regularization
parameter something different)

• computeGradient(theta, X, y, reg): computes the d-dimensional gradient of the logistic regression
objective function for the given values of θ, X, y, and reg = λ

• sigmoid(z): returns the sigmoid function of z

Note that these methods have already been defined correctly for you in logreg.py; be very careful not to
change the API.

Sigmoid Function You should begin by implementing the sigmoid(z) function. Recall that the logistic
regression hypothesis h() is defined as:

hθ(x) = g(θTx)

where g() is the sigmoid function defined as:

g(z) =
1

1 + exp−z

The Sigmoid function has the property that g(+∞) ≈ 1 and g(−∞) ≈ 0. Test your function by calling
sigmoid(z) on different test samples. Be certain that your sigmoid function works with both
vectors and matrices — for either a vector or a matrix, you function should perform the sigmoid function
on every element.

2Bold text indicates files that you will need to complete; you should not need to modify any of the other files.

6

Cost Function and Gradient Implement the functions to compute the cost function and the gradient
of the cost function. Recall the cost function for logistic regression is a scalar value given by

J (θ) =

n∑
i=1

[−y(i) log(hθ(x(i)))− (1− y(i)) log(1− hθ(x(i)))] +
λ

2
‖θ‖22 .

The gradient of the cost function is a d-dimensional vector, where the jth element (for j = 1...d) is given by

∂J (θ)

∂θj
=

n∑
i=1

(hθ(x(i))− y(i))x(i)
j + λθj .

We must be careful not to regularize the θ0 parameter (corresponding to the 1’s feature we add to each
instance), and so

∂J (θ)

∂θ0
=

n∑
i=1

(hθ(x(i))− y(i)) .

Training and Prediction Once you have the cost and gradient functions complete, implement the fit

and predict methods. To make absolutely certain that the un-regularized θ0 corresponds to the 1’s feature
that we add to the input, we will augment both the training and testing instances within the fit and
predict methods (instead of relying on it being done externally to the classifier). Recall that you can do
this via:

X = np . c [np . ones ((n , 1)) , X]

Your fit method should train the model via gradient descent, relying on the cost and gradient functions.
Instead of simply running gradient descent for a specific number of iterations (as in the linear regression
exercise), we will use a more sophisticated method: we will stop it after the solution has converged. Stop
the gradient descent procedure when θ stops changing between consecutive iterations. You can detect this
convergence when

‖θnew − θold‖2 ≤ ε , (6)

for some small ε (e.g, ε = 10E-4). For readability, we’d recommend implementing this convergence test as
a dedicated function hasConverged. For safety, we will also set the maximum number of gradient descent
iterations, maxNumIters. The values of λ, ε, maxNumIters, and α (the gradient descent learning rate) are
arguments to LogisticRegression’s constructor. At the start of gradient descent, θ should be initialized
to random values with mean 0, as described in the linear regression exercise.

2.2 Testing Your Implementation

To test your logistic regression implementation, run python test logreg1.py from the command line. This
script trains a logistic regression model using your implementation and then uses it to predict whether or
not a student will be admitted to a school based on their scores on two exams. In the plot, the colors of the
points indicate their true class label and the background color indicates the predicted class label. If your
implementation is correct, the decision boundary should closely match the true class labels of the points,
with only a few errors.

2.3 Analysis

Varying λ changes the amount of regularization, which acts as a penalty on the objective function for complex
solutions. In test logreg1.py, we provide the code to draw the decision boundary of the model. Vary the
value of λ in test logreg1.py and plot the decision boundary for each value. Include several plots in your
PDF writeup for this assignment, labeling each plot with the value of λ in your writeup. Write a brief
paragraph (2-3 sentences) describing what you observe as you increase the value of λ and explain why.

7

3 Learning a Nonlinear Decision Surface (10 pts)

Relevant Files in Homework Skeleton3

• test logreg2.py - python script to test logistic regression on non-linearly separable data

• data/data2.dat - Microchip data, non-linearly separable

• mapFeature.py - Map instances to a higher dimensional polynomial feature space

Some classification problems that cannot be solved in a low-dimensional feature space can be separable
in a high-dimension space. We can make our logistic regression classifier much more powerful by adding
additional features to the input. Imagine that we are given a data set with only two features, x1 and x2, but
the decision surface is non-linear in these two features. We can expand the possible feature set into higher
dimensions by adding new features that are functions of the given features. For example, we could add a
new feature that is the product of the original features, or any other mathematical function of those two
features that we want.

In this example, we will map the two features into all polynomial terms of x1 and x2 up to the 6th power:

mapFeature(x1, x2) =



1
x1
x2
x21
x1x2
x22
· · ·
x1x

5
2

x62


(7)

Given a 2-dimensional instance x, we can project that instance into a 28-dimensional feature space using
the transformation above. Then, instead of training the classifier on instances in the 2-dimensional space,
we train it on the 28-dimensional projection of those instances. The resulting decision boundary will then
be more complex and will appear non-linear in the 2D plot.

Complete the mapFeature function in mapFeature.py to map instances from a 2D feature space to a 28-
dimensional feature space defined by all polynomial terms of x1 and x2 up to the sixth power. Your function
mapFeature(X1, X2) will take in two column matrices, X1 and X2, which correspond to the 1st and 2nd
columns respectively of the data set X (recall that X is n-by-d, and so both X1 and X2 will have n entries).
It will return an n-by-28 dimensional matrix, where each row represents the expanded feature set for one
instance.

Once this function is complete, you can run python test logreg2.py from the command line. This script
will load a data set that is non-linearly separable, use your mapFeature function to project the instances
into a higher dimensional space, and then train a logistic regression model in that higher dimensional feature
space. When we project the resulting non-linear classifier back down into 2D, we get a decision surface that
appears similar to the following:

3Bold text indicates files that you will need to complete; you should not need to modify any of the other files.

8

Figure 2: Nonlinear Logistic Regression Classifier

4 Support Vector Machines (20 points)

In this section, we’ll implement various kernels for the support vector machine (SVM). This exercise looks
long, but in practice you’ll be writing only a few lines of code. The scikit learn package already includes
several SVM implementations; in this case, we’ll focus on the SVM for classification, sklearn.svm.SVC.
Before starting this assignment, be certain to read through the documentation for SVC, available at http:

//scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

While we could certainly create our own SVM implementation, most people applying SVMs to real problems
rely on highly optimized SVM toolboxes, such as LIBSVM or SVMlight.4 These toolboxes provide highly
optimized SVM implementations that use a variety of optimization techniques to enable them to scale to
extremely large problems. Therefore, we will focus on implementing custom kernels for the SVMs, which is
often essential for applying these SVM toolboxes to real applications.

Relevant Files in Homework 2 Skeleton5

• example svm.py
• example svmCustomKernel.py
• svmKernels.py
• test svmGaussianKernel.py

• test svmPolyKernel.py
• data/svmData.dat
• data/svmTuningData.dat

4.1 Getting Started

The SVC implementation provided with scikit learn uses the parameter C to control the penalty for misclas-
sifying training instances. We can think of C as being similar to the inverse of the regularization parameter
1
λ that we used before for linear and logistic regression. C = 0 causes the SVM to incur no penalty for
misclassifications, which will encourage it to fit a larger-margin hyperplane, even if that hyperplane misclas-
sifies more training instances. As C grows large, it causes the SVM to try to classify all training examples
correctly, and so it will choose a smaller margin hyperplane if that hyperplane fits the training data better.

Examine example svm.py, which fits a linear SVM to the data shown below. Note that most of the positive
and negative instances are grouped together, suggesting a clear separation between the classes, but there is
an outlier around (0.5,6.2). In the first part of this exercise, we will see how this outlier affects the SVM fit.

Run example svm.py with C = 0.01, and you can clearly see that the hyperplane follows the natural
separation between most of the data, but misclassifies the outlier. Try increasing the value of C and observe
the effect on the resulting hyperplane. With C = 1, 000, we can see that the decision boundary correctly
classifies all training data, but clearly no longer captures the natural separation between the data.

4The SVC implementation provided with scikit learn is based on LIBSVM, but is not quite as efficient.
5Bold text indicates files that you will need to complete; you should not need to modify any of the other files.

9

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

4.2 Implementing Custom Kernels

The SVC implementation allows us to define our own kernel functions to learn non-linear decision surfaces
using the SVM. The SVC constructor’s kernel argument can be defined as either a string specifying one of
the built-in kernels (e.g., ’linear’, ’poly’ (polynomial), ’rbf’ (radial basis function), ’sigmoid’, etc.)
or it can take as input a custom kernel function, as we will define in this exercise.

For example, the following code snippet defines a custom kernel and uses it to train the SVM:

def myCustomKernel (X1 , X2) :
”””
Custom ke rne l :
k (X1, X2) = X1 (3 0) X2.T

(0 2)

Note t ha t X1 and X2 are numpy arrays , so we must use . dot to mu l t i p l y them .
”””
M = np . array ([[3 . 0 , 0] , [0 , 2 . 0]])
return np . dot (np . dot (X1 , M) , X2 .T)

crea t e SVM with custom ke rne l and t r a i n model
c l f = svm .SVC(ke rne l=myCustomKernel)
c l f . f i t (X, Y)

When the SVM calls the custom kernel function during training, X1 and X2 are both initialized to be
the same as X (i.e., ntrain -by-d numpy arrays); in other words, they both contain a complete copy of
the training instances. The custom kernel function returns an ntrain -by-ntrain numpy array during the
training step. Later, when it is used for testing, X1 will be the ntest testing instances and X2 will be the
ntrain training instances, and so it will return an ntest -by-ntrain numpy array. For a complete example, see
example svmCustomKernel.py, which uses the custom kernel above to generate the following figure:

4.3 Implementing the Polynomial Kernel

We will start by writing our own implementation of the polynomial kernel and incorporate it into the SVM.6

Complete the myPolynomialKernel() function in svmKernels.py to implement the polynomial kernel:

K(v,w) = (〈v,w〉+ 1)d , (8)

where d is the degree of polynomial and the “+1” incorporates all lower-order polynomial terms. In this
case, v and w are feature vectors. Vectorize your implementation to make it fast. Once complete, run

6Although scikit learn already defines the polynomial kernel, defining our own version of it provides an easy way to get
started implementing custom kernels.

10

test svmPolyKernel.py to produce a plot of the decision surface. For comparison, it also shows the decision
surface learned using the equivalent built-in polynomial kernel; your results should be identical.

Figure 3: Sample output of test svmPolyKernel.py

For the built-in polynomial kernel, the degree is specified in the SVC constructor. However, in our custom
kernel we must set the degree via a global variable polyDegree. Therefore, be sure to use the value of the
global variable polyDegree as the degree in your polynomial kernel. The test svmPolyKernel.py script
uses polyDegree for the degree of both your custom kernel and the built-in polynomial kernel.

Vary both C and d and study how the SVM reacts.

4.4 Implementing the Gaussian Radial Basis Function Kernel

Next, complete the myGaussianKernel() function in svmKernels.py to implement the Gaussian kernel:

K(v,w) = exp

(
−‖v−w‖22

2σ2

)
. (9)

Be sure to use the gaussSigma for σ in your implementation. For computing the pairwise squared distances
between the points, you must write the method to compute it yourself; specifically you may not use the helper
methods available in sklearn.metrics.pairwise or that come with scipy. You can test your implementation
and compare it to the equivalent RBF-kernel provided in sklearn by running test svmGaussianKernel.py.

Again, vary both C and σ and study how the SVM reacts.

Write a brief paragraph describing how the SVM reacts as both C and d vary for the polynomial kernel, and
as C and σ vary for the Gaussian kernel. Put this paragraph in your writeup.

11

Figure 4: Sample output of test svmGaussianKernel.py

4.5 Choosing the Optimal Parameters

This exercise will further help you gain further practical skill in applying SVMs with Gaussian kernels. Choos-
ing the correct values for C and σ can dramatically affect the quality of the model’s fit to data. Your task
is to determine the optimal values of C and σ for an SVM with your Gaussian kernel as applied to the data
in data/svmTuningData.dat, depicted below. You should use whatever method you like to search over the

space of possible combinations of C and σ, and determine the optimal fit as measured by accuracy. You may
use any built-in methods from scikit learn you wish (e.g., sklearn.grid search.GridSearchCV). We recom-
mend that you search over multiplicative steps (e.g., . . . , 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1, 3, 6, 10, 30, 60, 100, . . .).
Once you determine the optimal parameter values, report those optimal values and the corresponding esti-
mated accuracy in your writeup. For reference, the SVM with the optimal parameters we found produced
the following decision surface.

The resulting decision surface for your optimal parameters may look slightly different than ours.

12

13

	Maximum Likelihood Estimation (MLE) (15 pts)
	Fitting an SVM by Hand (15 pts)
	Polynomial Regression (25 pts)
	Implementing Polynomial Regression
	Examine the Bias-Variance Tradeoff through Learning Curves

	Logistic Regression (35 points)
	Implementation
	Testing Your Implementation
	Analysis

	 Learning a Nonlinear Decision Surface (10 pts)

	Support Vector Machines (20 points)
	Getting Started
	Implementing Custom Kernels
	Implementing the Polynomial Kernel
	Implementing the Gaussian Radial Basis Function Kernel
	Choosing the Optimal Parameters

