
CSE 446: Machine Learning

Assignment 1

Due: February 3rd, 2020 9:30am

Instructions

Read all instructions in this section thoroughly.

Collaboration: Make certain that you understand the course collaboration policy, described on the course
website. You must complete this assignment individually; you are not allowed to collaborate with anyone
else. You may discuss the homework to understand the problems and the mathematics behind the various
learning algorithms, but you are not allowed to share problem solutions or your code with any
other students. You must also not consult code on the internet that is directly related to the programming
exercise.

You are also prohibited from posting any part of your solution to the internet, even after the course is
complete. Similarly, please don’t post this PDF file or the homework skeleton code to the internet.

Formatting: This assignment consists of two parts: a problem set and program exercises.

For the problem set, you must write up your solutions electronically and submit it as a single PDF document,
which you will submit through Gradescope. We will not accept handwritten or paper copies of the home-
work. Your problem set solutions must use proper mathematical formatting. For this reason, we strongly
encourage you to write up your responses using LATEX.

Your solutions to the programming exercises must be implemented in python, following the precise instruc-
tions included in Part 2. Several parts of the programming exercise ask you to create plots or describe
results; these should be included in the same PDF document that you create for the problem set.

Homework Template and Files to Get You Started: The homework zip file contains the skeleton
code and data sets that you will require for this assignment. Please read through the documentation
provided in ALL files before starting the assignment.

Citing Your Sources: Any sources of help that you consult while completing this assignment (other
students, textbooks, websites, etc.) *MUST* be noted in the your PDF document. This includes anyone
you briefly discussed the homework with. If you received help from the following sources, you do not need to
cite it: course instructor, course teaching assistants, course lecture notes, course textbooks or other course
materials.

Submitting Your Solution: You will be submitting only the following files, which you created or modified
as part of homework 1:

• hw1-UWNETID.pdf (a PDF of your homework 1 writeup)

• linreg.py

• dtree eval.py

Please follow the naming conventions exactly, and do not submit additional files including the test scripts
or data sets. Your PDF writeup of Homework 1 should be named hw1-UWNETID.pdf, where “UWNETID”
is your own UW netID (for example, my file would be named “hw1-bboots.pdf”). Please submit the PDF
through Gradescope, and submit the .py files in a .zip file on Canvas.

Acknowledgements: Parts of the linear regression exercise have been adapted from course materials by
Andrew Ng.
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PART I: PROBLEM SET

Your solutions to the problems will be submitted as a single PDF document. Be certain that your problems
are well-numbered and that it is clear what your answers are.

1 Decision Tree Learning (30 pts)
The following table gives a data set for deciding whether to play or cancel a ball game, depending on the
weather conditions.

Outlook Temp (F) Humidity (%) Windy? Class
sunny 75 70 true Play
sunny 80 90 true Don’t Play
sunny 85 85 false Don’t Play
sunny 72 95 false Don’t Play
sunny 69 70 false Play
overcast 72 90 true Play
overcast 83 78 false Play
overcast 64 65 true Play
overcast 81 75 false Play
rain 71 80 true Don’t Play
rain 65 70 true Don’t Play
rain 75 80 false Play
rain 68 80 false Play
rain 70 96 false Play

(a) (10 pts.) At the root node for a decision tree in this domain, what are the information gains associated
with the Outlook and Humidity attributes? (Use a threshold of 75 for humidity (i.e., assume a binary split:
humidity ≤ 75 / humidity > 75). Be sure to show your computations.

(b) (10 pts.) Again at the root node, what are the gain ratios (Mitchell, Chapter 3) associated with the
Outlook and Humidity attributes (using the same threshold as in (a))? Be sure to show your computations.

(c) (10 pts.) Draw the complete (unpruned) decision tree, showing the information gain at each non-leaf
node, and class predictions at the leaves.

2 Linear Regression and kNN (10 pts)
[Exercise 2.7 from Hastie, et al.] Suppose we have a sample of n pairs (xi, yi) drawn i.i.d. from the following
distribution:

xi ∈ X, the set of instances
yi = f(xi) + εi, where f() is the regression function
εi ∼ G(0, σ2), a Gaussian with mean 0 and variance σ2

We can construct an estimator for f() that is linear in the yi,

f(x0) =

n∑
i=1

li(x0;X)yi , (1)

where the weights li(x0;X) do not depend on the yi, but do depend on the entire training set X. Show that
both linear regression and k-nearest neighbor regression are members of this class of estimators. Explicitly
describe the weights li(x0;X) for each of these algorithms.

3 Decision Trees & Linear Discriminants (10 pts)
Describe in detail how to modify a classic decision tree algorithm (ID3 / C4.5) to obtain oblique splits (i.e,
splits that are not parallel to an axis).
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PART II: PROGRAMMING EXERCISES

Before starting these programming exercises, you will need to make certain that you are working on a
computer with particular software:

• python 3.7.x (https://www.python.org/downloads/)

• numpy (http://www.numpy.org/)

• scipy (http://www.scipy.org/)

• scikit-learn (http://scikit-learn.org/stable/)

The instructions for installing scikit-learn already include the instructions for installing numpy and scipy, so
we recommend that you start there.

To test whether your computer is set up to run these exercises, launch the python interpreter from the
command line using the command python. Make certain that it says that you’re running python version
3.7.x; if not, you may need to change the python executable you’re running. Note that (ana|mini)conda

can set up a specific version of python in user space without touching the system python. Please refer to
the Python setup note posted on Piazza for details.

Then, run the following code in the python interpreter:

from s k l e a rn import t r e e
X = [ [ 0 , 0 ] , [ 2 , 2 ] ]
y = [ 0 . 5 , 2 . 5 ]
c l f = t r e e . Dec i s i onTreeRegres sor ( )
c l f = c l f . f i t (X, y )
c l f . p r e d i c t ( [ [ 1 , 1 ] ] )

If this code runs without error and gives you the following output:

array ( [ 0 . 5 ] )

then everything should be configured correctly for this homework.

Although you will be able to complete the first programming exercise immediately, you will likely need to
wait for subsequent lectures to be able to complete the remainder of the assignment.

1 Getting Started with Scikit-learn / Decision Trees (45 pts)

In the first programming exercise, we will get started with using scikit-learn and python by using an existing
decision tree implementation provided with scikit-learn. We will be applying decision tree learning to a
real-world data set: evaluating cardiac Single Proton Emission Computed Tomography (SPECT) images.

Relevant Files in Homework 1 Skeleton1

• example dt iris.py: script to load the IRIS dataset and perform decision tree learning on each pair
of features, plotting the results

• data/SPECTF.dat: the complete SPECTF Heart data set

• dtree eval.py: script to load the SPECTF data, train the decision tree model, and test its perfor-
mance. You will modify this file to implement 100 trials of ten-fold cross validation.

1Bold text indicates files that you will need to complete; you should not need to modify any of the other files.
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1.1 Getting Started

Read through and run the example dt iris.py script included in the assignment files. This script loads the
iris dataset and trains a decision tree classifier on it. The script also plots the decision surface (color-coded
by class, of which there are three) for each pair of four possible features. Notice how the decision surfaces
are all axis-aligned rectangular in shape.

Read through scikit-learn’s pages on the decision tree classifier, available at: http://scikit-learn.org/

stable/modules/tree.html. You may also find it helpful to look through the tutorials available on the
scikit-learn website.

1.2 Data Set Description

We will be applying decision tree learning to the evaluation of cardiac Single Proton Emission Computed
Tomography (SPECT) images. We will work with a database of 267 SPECT image sets, each of which corre-
sponds to a patient. Each patient’s scan was classified as either “normal” or “abnormal” by a physician; your
job is to train a classifier to automatically evaluate SPECT image sets based on this training data. Instead
of working with raw image sets, each SPECT image set was processed to extract 44 continuous features
that summarize the original SPECT images. Each feature is a number between 0 and 100 corresponding
to a “region of interest” in the image during stress or at-rest tests. The data is given in SPECTF.dat: the
first column represents the class label and the remaining columns represent the features. The SPECTF data
originally came from http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart.

1.3 Comparing Decision Trees

To get you started, we have already provided code in the dtree eval.py script to: read in the SPECTF
data, randomize the order of the instances in the data set, split the data into training and testing sets, train
the built-in scikit-learn decision tree classifier, predict labels for the test data, and report the classifier’s
performance compared to the true labels (as determined by cardiologists). Run the code from the com-
mand line via python dtree eval.py. Notice that the script outputs the accuracy for just one particular
training/testing split; this is hardly a good measure of how a decision tree could perform on this problem!

Your task is to modify the script to output a good estimate of the classifier’s performance, averaged over 100
trials of 10-fold cross-validation over the SPECTF data set. Be certain to follow the experimental procedure
we discussed in class. As a reminder, make certain to observe the following details:

• For each trial, split the data randomly into 10 folds, choose one to be the “test” fold and train the
decision tree classifier on the remaining nine folds. Then, evaluate the trained model on the held-out
“test” fold to obtain its performance.

• Repeat this process until each fold has been the test fold exactly once, then advance to the next trial.

• Be certain to shuffle the data at the start of each trial, but never within a trial. Report the mean and
standard deviation of the prediction accuracy over all 100 trials of 10-fold cross validation. In the end,
you should be computing statistics for 1,000 accuracy values.

Note: although scikit-learn provides libraries that implement cross-fold validation, you may not use them
for this assignment – you must implement cross-fold validation yourself.

Once it is working for the basic decision tree, modify this script to also evaluate the performance of decision
stumps (a 1-level decision tree) and a 3-level decision tree on the same data. You may again use the built-in
scikit-learn decision tree classifier. Make certain that the three classifiers are trained and tested on exactly
the same subsets of the data each trial/fold.

Your implementation should be placed entirely in the evaluatePerformance() function, which should output
a matrix of statistics as defined in the API specified in the function header in dtree eval.py. Once you
are done, please comment out unnecessary print statements (e.g., ones you used for debugging). This will
further accelerate your implementation.

4

http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
http://archive.ics.uci.edu/ml/datasets/SPECTF+Heart


1.4 Generating a Learning Curve

Modify the code above to also generate and output a plot showing the learning curve over the training data.
The learning curve should plot the mean and standard deviation of the test accuracy for 10%, 20%, . . . ,
100% of the training data. Note that 100% of the training data corresponds to only 90% of the complete
data set, since we’re doing 10-fold cross-validation.

As before, the learning curve statistics should be computed over 100 trials of 10-fold cross-validation. Make
certain that you compute the learning curve for each subset of the training set for a particular trial/fold
combination; in other words, the learning curve should be generated in an inner loop inside the trial/fold
loops. In addition to the decision stumps, 3-level decision tree, and depth-unlimited decision tree, add a few
additional decision trees of varying limited depths to explore the effect of decision tree depth on learning
performance. Display the learning curves for all classifiers on the same plot. Add a well-labeled key to your
plot.

To display the standard deviations on the plot, see the fill between http://matplotlib.org/api/pyplot_

api.html#matplotlib.pyplot.fill_between) or errorbar (http://matplotlib.org/examples/statistics/
errorbar_demo_features.html) functions in matplotlib.

Include your figure in your PDF writeup of the assignment, and make certain that it is well-labeled.

2 Linear Regression (35 pts)

In this exercise, you will implement multivariate linear regression. This exercise looks very long, but in
practice you implement only around 10 lines of code total; it is designed to walk you through working with
scikit-learn and implementing machine learning algorithms from scratch in python.

The homework 1 codebase contains a number of files and functions for this exercise:

Files and API

test linreg univariate.py: script to test univariate linear regression

• plotData1D: produce the scatter plot of the one dimensional data

• plotRegLine1D: You will use the plotData1D function to make a scatter plot and use the parameters
obtained from regression to plot a regressed line on the same plot.

• visualizeObjective: Visualize the objective function by plotting surface and contour plots (You do
not edit this method)

test linreg multivariate.py: script to test multivariate linear regression

linreg.py: file containing code for linear regression

LinearRegression : class for multivariate linear regression

• init : constructor of the class

• fit: method to train the multivariate linear regression model

• predict: method to use the trained linear regression model for prediction

• computeCost: compute the value of the objective function

• gradientDescent: optimizes the parameter values via gradient descent

Data Sets (located in the data directory)

• univariateData.dat: data for the univariate linear regression problem

• multivariateData.dat: data for the multivariate linear regression problem
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Figure 1: Scatter plot of the 1D data Figure 2: Regressed line of the 1D data

2.1 Visualizing the Data

Visualization of data often provides valuable insight into the problem, but is frequently overlooked as part
of the machine learning process. We will start by visualizing the univariate data set using a 2D scatter
plot of the output vs the input. However, in this class we will typically be dealing with multi-dimensional
data sets. Once we go beyond two dimensions, visualization becomes much more difficult. In such cases, we
must either visualize each dimension separately, or use dimensionality reduction techniques (such as PCA)
to reduce the number of features. Later in the course, we will discuss such techniques.

You can load the univariate data into the matrix variables X and y by executing the following commands
in the python interpreter from within the hw1 directory:

import numpy as np
f i l e P a t h = ” data / univar iateData . dat”
f i l e = open( f i l ePa th , ’ r ’ )
a l lData = np . l oadtx t ( f i l e , d e l i m i t e r=’ , ’ )
X = np . matrix ( a l lData [ : , : − 1 ] )
y = np . matrix ( ( a l lData [ : , − 1 ] ) ) .T
# ge t the number o f i n s t ance s (n) and number o f f e a t u r e s ( d )
n , d = X. shape

Then, create a scatterplot of the data using the plotData1D method:

from t e s t l i n r e g u n i v a r i a t e import plotData1D
plotData1D (X, y )

Your output graph should be similar to Figure 1.

This is a good chance to learn about matplotlib and the plotting tools in python. Matplotlib is a python 2D
plotting library (can be easily extended to 3D with other libraries) which creates MATLAB-like plots. For
details, see the code for plotData1D.

2.2 Implementation

Implement multivariate linear regression via gradient descent by completing the LinearRegression class
skeleton. Be certain not to change the class API. The only places you need to change in the file are marked
with “TODO” comment tags.

Linear regression fits the parameter vector θ to the dataset. In this exercise, we will use gradient descent
to find the optimal solution. Recall that the L2 linear regression objective function is convex, so gradient
descent will find the global optimum. This problem also has a closed-form solution, but more on that later.
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Linear regression minimizes the squared loss on the data set to yield the optimal θ̂, which is given as

θ̂ = argmin
θ

J(θ) (2)

J (θ) =
1

2n

n∑
i=1

(
hθ

(
x(i)

)
− y(i)

)2
, (3)

where the function hθ(x) maps the input feature space to the output space via

hθ(x) = θᵀx . (4)

In the case of univariate regression (where x is only one variable), hθ(x) = θᵀx = θ0 + θ1x. Note that θ0
acts as a bias term. Instead of treating this term separately, we can incorporate it into the same format as
Equation 4 by adding a new feature containing a one (1) to every instance x; this allows us to treat θ0 as
the coefficient over just another feature x0 whose value is always 1. For the entire data set X, we can add
a column of ones to the X matrix in order to include this bias term via

X = np . c [ np . ones ( ( n , 1 ) ) , X]

Gradient descent searches the space of possible θ’s to minimize the cost function J (θ). The basic loop of
gradient descent has already been implemented for you; you will just need to fill in the update equation.
Each iteration of the descent should perform the following simultaneous update to the parameters:

θj ← θj − α
1

n

n∑
i=1

(
hθ

(
x(i)

)
− y(i)

)
x
(i)
j . (5)

When using this update equation, be certain to update all θj’s simultaneously. Each step of gradient
descent will bring θ closer to the optimal value that minimizes J (θ). The variable α is the learning rate,
and should be chosen to be small (e.g., α = 0.01).

The initial value for each entry of θ is chosen randomly in some small range around 0 (using either a Gaussian
with a small variance or drawing uniformly with a small range is fine, so long as the mean is 0).

Finally, in order to make our implementation easy to test, we will implement the cost function J (θ) (Equa-
tion 3) as a separate function computeCost in the LinearRegression class.

Common Issues

• Make certain that all θj ’s are updated simultaneously; don’t update one entry of the vector and then
use that partly-updated θ to compute hθ

(
x(i)

)
while updating another entry in the same gradient

descent iteration.

• Remember that gradient descent is searching over the space of θ’s; X and y do not change in each
iteration.

Testing Your Implementation One simple way to test your implementation is to examine the value of
J (θ) printed out at each iteration of gradient descent. If it is working correctly, you should see the cost
monotonically decreasing over time.

Once you are finished with your implementation, train it on the univariate data set and then call the
plotRegLine1D function in the test linreg univariate.py.

from t e s t l i n r e g u n i v a r i a t e import plotRegLine1D
from l i n r e g import LinearRegre s s i on
X = np . c [ np . ones ( ( n , 1 ) ) , X] # i f you didn ’ t do t h i s s t ep a l r eady
l r mode l = LinearRegre s s i on ( alpha = 0 .01 , n i t e r = 1500)
l r mode l . f i t (X, y )
plotRegLine1D ( lr model , X, y )

You should get a plot that looks like Figure 2.
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2.3 Understanding Gradient Descent

For this part, you do not need to write any code. To better understand our implementation, we will visualize
the objective function and the path chosen by gradient descent.

For the univariate data set, we can plot the variation of the objective function over the space of θ0 and θ1
as a surface plot and a contour plot to show the convex shape and the descent. The blue line in Figure 3
traces the path taken by the gradient descent and the magenta dots show the points at each iteration.

To see this with your own implementation, run the following command from the command prompt (not
within the python interpreter):

python t e s t l i n r e g u n i v a r i a t e . py

Once you have the plot, move it around to clearly observe the path taken by gradient descent. Explore
these results by changing the starting point for gradient descent (i.e., the initial value of θ). Refer to the
visualizeObjective function in test linreg univariate.py for more details.

Once your implementation is working on univariate data, test it on multivariate data by running

python t e s t l i n r e g m u l t i v a r i a t e . py

from the command line.

2.4 Accelerating Our Implementation

Although it won’t make much difference with the small data sets we’re using in this problem, we can often
make machine learning implementations much faster and more concise by vectorizing our code. Modify your
previous implementation to compute the cost function and gradient updates using only matrix operations
(e.g., no loops within the equation).

For example, the objective (cost) function can be written in matrix form as:

J (θ) =
1

2n
(Xθ − y)

ᵀ
(Xθ − y) , (6)

where X ∈ Rn×d is the matrix of instances, and y ∈ Rn is the vector of corresponding labels. It is up to
you to figure out the matrix form of the gradient descent update step.

Figure 3: Surface plot of the cost function and gra-
dient descent, starting with θ = [10, 10]

Figure 4: Contour plot of the gradient descent
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2.5 Closed-Form Solution

In this section, you will implement the closed-form solution for linear regression. Recall that the closed-form
solution is given by

θ = (XᵀX)
−1
Xᵀy (7)

Update the code in the main function of test linreg univariate.py and test linreg multivariate.py

to print out the solution obtained using the closed form formula. Copy and paste your one-line matrix equa-
tion for computing the closed form solution to linear regression (e.g., Line 171 of test linreg univariate.py

or Line 51 of test linreg multivariate.py into your solution PDF. For full credit, your computation
should only require one line of code. Confirm that your implementation yields nearly the same result as the
closed form solution in both the univariate and multivariate cases.

On first glance, using the closed form solution seems a lot easier than going through the trouble of using
gradient descent. However, the closed form solution only works in batch learning scenarios with relatively
small data sets. Specifically, here are two important cases when using gradient descent to solve linear
regression is essential:

1. When the size ofX becomes large (either in terms of the number of instances or the number of features),
the matrix inversion required to obtain the closed form solution becomes extremely computationally
expensive. Gradient descent is much faster in this case.

2. In the online learning paradigm, training instances arrive in a stream, one after the other. Consequently,
we don’t have all of the data available (as required for the closed form solution), and so much use
alternative techniques, such as stochastic gradient descent, which we will discuss later in the semester.
(As a quick primer, stochastic gradient descent uses only one data instance to update the model
parameters and is used as a fast approximation for batch gradient descent.)
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