
Section 6

1 Kernelized Linear Regression

Consider regularized linear regression (without a bias, for simplicity). Our objective to find the optimal
parameters ŵ = arg minw L(w) for a dataset {(xi, yi)}ni=1 that minimize the following loss function:

L(w) =

n∑
i=1

(wTxi − yi)2 + λ||w||22

We claim that the optimal ŵ lies in the span of the of the datapoints. Concretely, there exists α1, ..., αn ∈ R
such that:

ŵ =

n∑
i

αixi

In this case, we can re-write our prediction function, for an input x ∈ Rd as the following:

f̂(x) = ŵTx

= (

n∑
i

αixi)
Tx

=

n∑
i

αix
T
i x

=

n∑
i

αi < xi, x >

Note that since we can write the prediction function in terms of inner products (< xi, x >), we can replace
this with your favorite kernel function K(xi, x) to get the following:

f̂(x) =

n∑
i

αiK(xi, x)

In a proof by algebra and substitution, one can transform the objective to the following:

α̂ = arg min
α

||Kα− y||22 + λαTKα

where K ∈ Rn x n, such that Kij = K(xi, xj). Here, we are now optimizing over α instead of w. A proof by
calculus and substitution will reveal that the closed form solution is the following:

α̂ = (K + λI)−1y

2 Proof of ŵ ∈ Span(x1, ..., xn)

We will prove this through contradiction. Assume ŵ 6∈ Span(x1, ..., xn) solves arg minw L(w). Then, there
exists a component of ŵ that is perpendicular to the span, which we will call w⊥. Concretely,

ŵ = w̄ + w⊥
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Where w̄ =
∑n
i αixi is the component of ŵ in the span of the datapoints. Note that ŵ ·xi = w̄ ·xi, for every

xi since

ŵ · xi = (w̄ + w⊥) · xi
= w̄ · xi + w⊥ · xi
= w̄ · xi + 0 w⊥ is perpendicular to each xi

= w̄ · xi

Additionally, note that ||ŵ||22 ≥ ||w̄||22, because of the following:

||ŵ||22 = ||w̄ + w⊥||22
= ||w̄||22 + ||w⊥||22 Pythagorean theorem

≥ ||w̄||22

Note that in the loss function we’re trying to minimize the magnitude of w (with the regularization term
λ||w||22). Note that if ∀iŵTxi = w̄Txi, and ||ŵ|| ≥ ||w̄||, then our optimization will always choose w⊥ = 0,
meaning that ŵ = w̄ and ŵ ∈ Span(x1, ..., xn), which completes the contradiction.

3 Random Forest and Bagging

Remember from bias-variance tradeoff, we derived the following equation:

Test Error = Variance + Bias2 =

ED∼PN ,(x,y)∼P [(hD(x)− h̄(x))2] + E(x,y)∼P [(h̄(x)− ȳ(x))2]

where h̄(x) = ED[hD(x)], which can be thought as the weighted average over all possible hD, each trained
on a different possible dataset. ȳ(x) is the underlying ground truth function. So variance measures how
much does an individual hypothesis deviates from an average over all possible hypotheses. Bias measures
how much the expected hypothesis (i.e. the average over all possible hypotheses above) deviates from the
true underlying function.

Exercise A decision tree without depth limit has variance and bias.

Recall, we also had the following graph from bias-variance tradeoff, where the optimal model has relatively
low bias and low variance.
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Random Forest keeps the bias to be relatively low, and reduces variance effectively. In particular,
random forest is an ensemble of random trees (thus the name), {Tb}B1 , each trained on a corresponding
bootstrapped dataset Z∗b . The algorithm for constructing random forests is shown on the next page.

Bootstrapping: Given a dataset Z = {(xi, yi)}N1 , the bootstrapped dataset Z∗b = {(x′i, y′i)}N1 , where (x′i, y
′
i)

are elements uniformly sampled from Z with replacement.

For a tree Tb trained on Z∗b , let hTb
denote the corresponding hypothesis function. Note, on expectation,

the variance for each individual tree has not changed:

ED∼PN ,(x,y)∼P [(hT (x)− h̄(x))2] = ED∼PN ,(x,y)∼P [(hTb
(x)− h̄(x))2] = σ2

However, now we have B trees, though still dependent, they are much less correlated than having B
identical trees. In math, this means:

ED∼PN ,(x,y)∼P [(hTi
(x)− h̄(x))(hTj

(x)− h̄(x))] = δσ2

Now, if use the ensemble of the hypotheses, we get a much smaller variance:

E[(
1

B

B∑
b=1

hTb
(x)− h̄(x))2]

=
1

B2

B∑
b=1

E[(hTb
(x)− h̄(x))2] +

1

B2

∑
i 6=j

E[(hTi
(x)− h̄(x))(hTj

(x)− h̄(x))]

=
1

B2
(Bσ2 + (B − 1)Bδσ2) =

1

B
σ2 +

B − 1

B
δσ2

Lastly, notice in the above derivations, we kind of cheated by assuming

h̄(x) = E[hT (x)] = E[hTb
(x)]

However, the last equality is only true asymptotically when the number of data points N →∞. Nevertheless,
we can assume them to be approximately equal when N is large.
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