Linear Regression: Basis Functions, Vectorization

These slides were assembled by Byron Boots, with grateful acknowledgement to Eric Eaton and the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.
Last Time: Linear Regression

• Hypothesis:

\[y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d = \sum_{j=0}^{d} \theta_j x_j \]

• Fit model by minimizing sum of squared errors

![Graph showing least squares regression](image)

Figures are courtesy of Greg Shakhnarovich
Last Time: Gradient Descent

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Simultaneous update for $j = 0 \ldots d$
Regression

Given:

- Data $X = \{x^{(1)}, \ldots, x^{(n)}\}$ where $x^{(i)} \in \mathbb{R}^d$

- Corresponding labels $y = \{y^{(1)}, \ldots, y^{(n)}\}$ where $y^{(i)} \in \mathbb{R}$

Extending Linear Regression to More Complex Models

- The inputs X for linear regression can be:
 - Original quantitative inputs
 - Transformation of quantitative inputs
 - e.g. log, exp, square root, square, etc.
 - Polynomial transformation
 - example: $y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3$
 - Basis expansions
 - Dummy coding of categorical inputs
 - Interactions between variables
 - example: $x_3 = x_1 \cdot x_2$

This allows use of linear regression techniques to fit non-linear datasets.
Linear Basis Function Models

• Generally,
 \[
 h_\theta(x) = \sum_{j=0}^{d} \theta_j \phi_j(x)
 \]

• Typically, \(\phi_0(x) = 1 \) so that \(\theta_0 \) acts as a bias

• In the simplest case, we use linear basis functions:
 \[
 \phi_j(x) = x_j
 \]
Linear Basis Function Models

• Polynomial basis functions:
 \[\phi_j(x) = x^j \]
 – These are global; a small change in \(x \) affects all basis functions

• Gaussian basis functions:
 \[\phi_j(x) = \exp \left\{ - \frac{(x - \mu_j)^2}{2s^2} \right\} \]
 – These are local; a small change in \(x \) only affect nearby basis functions. \(\mu_j \) and \(s \) control location and scale (width).

Based on slide by Christopher Bishop (PRML)
Linear Basis Function Models

- Sigmoidal basis functions:

\[\phi_j(x) = \sigma \left(\frac{x - \mu_j}{s} \right) \]

where

\[\sigma(a) = \frac{1}{1 + \exp(-a)} \]

- These are also local; a small change in \(x \) only affects nearby basis functions. \(\mu_j \) and \(s \) control location and scale (slope).
Example of Fitting a Polynomial Curve with a Linear Model

$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_p x^p = \sum_{j=0}^{p} \theta_j x^j$
Linear Basis Function Models

- Basic linear model:
 \[h_\theta(x) = \sum_{j=0}^{d} \theta_j x_j \]

- More general linear model:
 \[h_\theta(x) = \sum_{j=0}^{d} \theta_j \phi_j(x) \]

- Once we have replaced the data by the outputs of the basis functions, fitting the generalized model is exactly the same problem as fitting the basic model
 - Unless we use the kernel trick – more on that when we cover support vector machines

Based on slide by Geoff Hinton