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Regression

Given:

– Data                                              where

– Corresponding labels                                           where  
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Data from G. Witt. Journal of Statistics Education, Volume 21, Number 1 (2013)

Linear Regression

Quadratic Regression

X =
n
x(1), . . . ,x(n)

o
x(i) 2 Rd

y =
n
y(1), . . . , y(n)

o
y(i) 2 R



Linear Regression

• Hypothesis: 

• Fit model by minimizing sum of squared errors 
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x

y = ✓0 + ✓1x1 + ✓2x2 + . . .+ ✓dxd =
dX

j=0

✓jxj

Assume x0 = 1

y = ✓0 + ✓1x1 + ✓2x2 + . . .+ ✓dxd =
dX

j=0

✓jxj

Figures are courtesy of Greg Shakhnarovich



Least Squares Linear Regression
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• Cost Function

• Fit by solving 

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

min
✓

J(✓)



Intuition Behind Cost Function
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For insight on J(), let’s assume               so  x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

Based on example 

by Andrew Ng



Intuition Behind Cost Function
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Intuition Behind Cost Function
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For insight on J(), let’s assume               so  x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

J([0, 0.5]) =
1

2⇥ 3

⇥
(0.5� 1)2 + (1� 2)2 + (1.5� 3)2

⇤
⇡ 0.58Based on example 

by Andrew Ng



Intuition Behind Cost Function
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For insight on J(), let’s assume               so  x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

J([0, 0]) ⇡ 2.333

Based on example 

by Andrew Ng

J() is convex



Intuition Behind Cost Function
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A function of a single variable J() is convex if it is 

twice differentiable and its 

second derivative is always nonnegative. 



Intuition Behind Cost Function
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Jensen’s Inequality



Intuition Behind Cost Function

11Slide by Andrew Ng



Intuition Behind Cost Function
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(for fixed           , this is a function of x) (function of the parameters            )

Slide by Andrew Ng



Intuition Behind Cost Function
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(for fixed           , this is a function of x) (function of the parameters            )
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Intuition Behind Cost Function
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(for fixed           , this is a function of x) (function of the parameters            )
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Intuition Behind Cost Function
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(for fixed           , this is a function of x) (function of the parameters            )

Slide by Andrew Ng



Basic Search Procedure

• Choose initial value for 

• Until we reach a minimum:

– Choose a new value for      to reduce 
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✓

✓ J(✓)

q1
q0

J(q0,q1)

Figure by Andrew Ng



Basic Search Procedure

• Choose initial value for 

• Until we reach a minimum:

– Choose a new value for      to reduce 
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J(✓)

q1
q0

J(q0,q1)

✓

Figure by Andrew Ng



Basic Search Procedure

• Choose initial value for 

• Until we reach a minimum:

– Choose a new value for      to reduce 
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✓

✓

J(✓)

q1
q0

J(q0,q1)

✓

Figure by Andrew Ng

Since the least squares objective function is convex (concave), we 

don’t need to worry about local minima in linear regression



Gradient Descent

• Initialize 

• Repeat until convergence
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✓

✓j  ✓j � ↵
@

@✓j
J(✓) simultaneous update 

for j = 0 ... d

learning rate (small)

e.g., α = 0.05

J(✓)

✓

0

1

2

3

-0.5 0 0.5 1 1.5 2 2.5

↵



Gradient Descent

• Initialize 

• Repeat until convergence
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for j = 0 ... d

For Linear Regression:
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Gradient Descent

• Initialize 

• Repeat until convergence
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Gradient Descent

• Initialize 

• Repeat until convergence

22

✓

✓j  ✓j � ↵
@

@✓j
J(✓) simultaneous update 

for j = 0 ... d

For Linear Regression:
@

@✓j
J(✓) =

@

@✓j

1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

=
@

@✓j

1

2n

nX

i=1

 
dX

k=0

✓kx
(i)
k � y(i)

!2

=
1

n

nX

i=1

 
dX

k=0

✓kx
(i)
k � y(i)

!
⇥ @

@✓j

 
dX

k=0

✓kx
(i)
k � y(i)

!

=
1

n

nX

i=1

 
dX

k=0

✓kx
(i)
k � y(i)

!
x(i)
j

=
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j



Gradient Descent

• Initialize 

• Repeat until convergence
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Gradient Descent for Linear Regression

• Initialize 

• Repeat until convergence
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✓

simultaneous 

update 

for j = 0 ... d

✓j  ✓j � ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j

kvk2 =

sX

i

v2i =
q

v21 + v22 + . . .+ v2|v|L2 norm:

k✓new � ✓oldk2 < ✏• Assume convergence when 



Gradient Descent
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(for fixed           , this is a function of x) (function of the parameters            )

h(x) = -900 – 0.1 x

Slide by Andrew Ng



Gradient Descent
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Gradient Descent
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Choosing α
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α too small

slow convergence

α too large

Increasing value for J(✓)

• May overshoot the minimum

• May fail to converge

• May even diverge

To see if gradient descent is working, print out           each iteration

• The value should decrease at each iteration

• If it doesn’t, adjust α

J(✓)


