
Linear Regression

& Gradient Descent

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Byron Boots, with grateful acknowledgement to Eric Eaton and the many

others who made their course materials freely available online. Feel free to reuse or adapt these slides for
your own academic purposes, provided that you include proper attribution.

Regression

Given:

– Data where

– Corresponding labels where

2

0

1

2

3

4

5

6

7

8

9

1975 1980 1985 1990 1995 2000 2005 2010 2015

Se
pt

em
be

r A
rc

tic
 S

ea
 Ic

e
Ex

te
nt

(1

,0
00

,0
00

 sq
 k

m
)

Year

Data from G. Witt. Journal of Statistics Education, Volume 21, Number 1 (2013)

Linear Regression

Quadratic Regression

X =
n
x(1), . . . ,x(n)

o
x(i) 2 Rd

y =
n
y(1), . . . , y(n)

o
y(i) 2 R

Linear Regression

• Hypothesis:

• Fit model by minimizing sum of squared errors

3

x

y = ✓0 + ✓1x1 + ✓2x2 + . . .+ ✓dxd =
dX

j=0

✓jxj

Assume x0 = 1

y = ✓0 + ✓1x1 + ✓2x2 + . . .+ ✓dxd =
dX

j=0

✓jxj

Figures are courtesy of Greg Shakhnarovich

Least Squares Linear Regression

4

• Cost Function

• Fit by solving

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

min
✓

J(✓)

Intuition Behind Cost Function

5

For insight on J(), let’s assume so x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

Based on example

by Andrew Ng

Intuition Behind Cost Function

6

0

1

2

3

0 1 2 3

y

x

(for fixed , this is a function of x) (function of the parameter)

0

1

2

3

-0.5 0 0.5 1 1.5 2 2.5

For insight on J(), let’s assume so x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

Based on example

by Andrew Ng

Intuition Behind Cost Function

7

0

1

2

3

0 1 2 3

y

x

(for fixed , this is a function of x) (function of the parameter)

0

1

2

3

-0.5 0 0.5 1 1.5 2 2.5

For insight on J(), let’s assume so x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

J([0, 0.5]) =
1

2⇥ 3

⇥
(0.5� 1)2 + (1� 2)2 + (1.5� 3)2

⇤
⇡ 0.58Based on example

by Andrew Ng

Intuition Behind Cost Function

8

0

1

2

3

0 1 2 3

y

x

(for fixed , this is a function of x) (function of the parameter)

0

1

2

3

-0.5 0 0.5 1 1.5 2 2.5

For insight on J(), let’s assume so x 2 R ✓ = [✓0, ✓1]

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

J([0, 0]) ⇡ 2.333

Based on example

by Andrew Ng

J() is convex

Intuition Behind Cost Function

9

A function of a single variable J() is convex if it is

twice differentiable and its

second derivative is always nonnegative.

Intuition Behind Cost Function

10

Jensen’s Inequality

Intuition Behind Cost Function

11Slide by Andrew Ng

Intuition Behind Cost Function

12

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Intuition Behind Cost Function

13

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Intuition Behind Cost Function

14

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Intuition Behind Cost Function

15

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Basic Search Procedure

• Choose initial value for

• Until we reach a minimum:

– Choose a new value for to reduce

16

✓

✓ J(✓)

q1
q0

J(q0,q1)

Figure by Andrew Ng

Basic Search Procedure

• Choose initial value for

• Until we reach a minimum:

– Choose a new value for to reduce

17

✓

✓

J(✓)

q1
q0

J(q0,q1)

✓

Figure by Andrew Ng

Basic Search Procedure

• Choose initial value for

• Until we reach a minimum:

– Choose a new value for to reduce

18

✓

✓

J(✓)

q1
q0

J(q0,q1)

✓

Figure by Andrew Ng

Since the least squares objective function is convex (concave), we

don’t need to worry about local minima in linear regression

Gradient Descent

• Initialize

• Repeat until convergence

19

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous update

for j = 0 ... d

learning rate (small)

e.g., α = 0.05

J(✓)

✓

0

1

2

3

-0.5 0 0.5 1 1.5 2 2.5

↵

Gradient Descent

• Initialize

• Repeat until convergence

20

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous update

for j = 0 ... d

For Linear Regression:
@

@✓j
J(✓) =

@

@✓j

1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

=
@

@✓j

1

2n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!2

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!
⇥ @

@✓j

dX

k=0

✓kx
(i)
k � y(i)

!

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!
x(i)
j

=
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j

Gradient Descent

• Initialize

• Repeat until convergence

21

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous update

for j = 0 ... d

For Linear Regression:
@

@✓j
J(✓) =

@

@✓j

1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

=
@

@✓j

1

2n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!2

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!
⇥ @

@✓j

dX

k=0

✓kx
(i)
k � y(i)

!

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!
x(i)
j

=
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j

Gradient Descent

• Initialize

• Repeat until convergence

22

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous update

for j = 0 ... d

For Linear Regression:
@

@✓j
J(✓) =

@

@✓j

1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

=
@

@✓j

1

2n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!2

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!
⇥ @

@✓j

dX

k=0

✓kx
(i)
k � y(i)

!

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!
x(i)
j

=
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j

Gradient Descent

• Initialize

• Repeat until convergence

23

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous update

for j = 0 ... d

For Linear Regression:
@

@✓j
J(✓) =

@

@✓j

1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

=
@

@✓j

1

2n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!2

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!
⇥ @

@✓j

dX

k=0

✓kx
(i)
k � y(i)

!

=
1

n

nX

i=1

dX

k=0

✓kx
(i)
k � y(i)

!
x(i)
j

=
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j

Gradient Descent for Linear Regression

• Initialize

• Repeat until convergence

24

✓

simultaneous

update

for j = 0 ... d

✓j ✓j � ↵
1

n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j

kvk2 =

sX

i

v2i =
q

v21 + v22 + . . .+ v2|v|L2 norm:

k✓new � ✓oldk2 < ✏• Assume convergence when

Gradient Descent

25

(for fixed , this is a function of x) (function of the parameters)

h(x) = -900 – 0.1 x

Slide by Andrew Ng

Gradient Descent

26

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Gradient Descent

27

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Gradient Descent

28

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Gradient Descent

29

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Gradient Descent

30

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Gradient Descent

31

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Gradient Descent

32

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Gradient Descent

33

(for fixed , this is a function of x) (function of the parameters)

Slide by Andrew Ng

Choosing α

34

α too small

slow convergence

α too large

Increasing value for J(✓)

• May overshoot the minimum

• May fail to converge

• May even diverge

To see if gradient descent is working, print out each iteration

• The value should decrease at each iteration

• If it doesn’t, adjust α

J(✓)

