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Last Time: Which Tree Should We Output
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Decision Tree Learning Applet 

•  http://www.cs.ualberta.ca/%7Eaixplore/learning/

DecisionTrees/Applet/DecisionTreeApplet.html 

Which Tree Should We Output? 

•  ID3 performs heuristic 

search through space of 

decision trees 

•  It stops at smallest 

acceptable tree. Why? 

Occam’s razor: prefer the 
simplest hypothesis that 
fits the data 



Preference bias: Ockham’s Razor
• Principle stated by William of Ockham (1285-1347)
– “non sunt multiplicanda entia praeter necessitatem”
– entities are not to be  multiplied beyond necessity 
– AKA Occam’s Razor, Law of Economy, or Law of Parsimony

• Therefore, the smallest decision tree that correctly 
classifies all of the training examples is best
• Finding the provably smallest decision tree is NP-hard
• ...So instead of constructing the absolute smallest tree 

consistent with the training examples, construct one that 
is pretty small

Idea:  The simplest consistent explanation is the best 



Overfitting in Decision Trees
• Many kinds of “noise” can occur in the examples:
– Two examples have same attribute/value pairs, but different 

classifications 
– Some values of attributes are incorrect because of errors in 

the data acquisition process or the preprocessing phase 
– The instance was labeled incorrectly (+ instead of -)

• Also, some attributes are irrelevant to the decision-
making process
– e.g., color of a die is irrelevant to its outcome

Based on Slide from M. desJardins & T. Finin
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• Irrelevant attributes can result in overfitting the 
training example data 
– If hypothesis space has many dimensions (large 

number of attributes), we may find meaningless 
regularity in the data that is irrelevant to the true, 
important, distinguishing features

• If we have too little training data, even a 
reasonable hypothesis space will‘overfit’

Based on Slide from M. desJardins & T. Finin
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Overfitting in Decision Trees
Consider adding a noisy training example to the following tree:

What would be the effect of adding:                 
<outlook=sunny, temperature=hot, humidity=normal, wind=strong, playTennis=No> ?

Based on Slide by Pedro Domingos
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Slide by Pedro Domingos
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Slide by Pedro Domingos
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Avoiding Overfitting in Decision Trees
How can we avoid overfitting?
• Stop growing when data split is not statistically significant
• Acquire more training data
• Remove irrelevant attributes (manual process – not always possible)

• Grow full tree, then post-prune

How to select “best” tree:
• Measure performance over training data
• Measure performance over separate validation data set
• Add complexity penalty to performance measure 

(heuristic: simpler is better)

Based on Slide by Pedro Domingos
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Reduced-Error Pruning

Split training data further into training and validation sets

Grow tree based on training set

Do until further pruning is harmful:
1. Evaluate impact on validation set of pruning each 

possible node (plus those below it)
2. Greedily remove the node that most improves 

validation set accuracy

Slide by Pedro Domingos
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Pruning Decision Trees
• Pruning of the decision tree is accomplished by replacing a 

whole subtree by a leaf node.
• The replacement takes place if a decision rule establishes that 

the expected error rate in the subtree is greater than in the 
single leaf.

• For example,

Color

1 positive
0 negative

0 positive
2 negative

red blue

Training Color

1 positive
3 negative

1 positive
1 negative

red blue

Validation

Based on Example from M. desJardins & T. Finin

2 correct
4 incorrect

If we had simply predicted the 
majority class (negative), we 
make 2 errors instead of 4.
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Based on Slide by Pedro Domingos

Effect of Reduced-Error Pruning
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On training data it looks great

But that’s not the case for the test (validation) data



Based on Slide by Pedro Domingos

Effect of Reduced-Error Pruning

The tree is pruned back to the red line where
it gives more accurate results on the test data 13



Summary: Decision Tree Learning
• Widely used in practice 

• Strengths include
– Fast and simple to implement
– Can convert to rules
– Handles noisy data 

• Weaknesses include
– Univariate splits/partitioning using only one attribute at a 

time --- limits types of possible trees
– Large decision trees may be hard to understand
– Requires fixed-length feature vectors 
– Non-incremental (i.e., batch method)
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