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Last Time: Basic Algorithm for 
Top-Down Learning of Decision Trees 

[ID3, C4.5 by Quinlan]

node = root of decision tree
Main loop:
1. Aß the “best” decision attribute for the next node.
2. Assign A as decision attribute for node.
3. For each value of A, create a new descendant of node.
4. Sort training examples to leaf nodes.
5. If training examples are perfectly classified, stop.  Else, 

recurse over new leaf nodes.

How do we choose which attribute is best?
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node = Root 

[ID3, C4.5, Quinlan] 

Entropy 

Entropy H(X) of a random variable X 

H(X) is the expected number of bits needed to encode a 

randomly drawn value of X  (under most efficient code)  

Why?  Information theory: 

•  Most efficient code assigns -log2P(X=i) bits to encode 

the message X=i 

•  So, expected number of bits to code one random X is:  

# of possible 
values for X

Slide by Tom Mitchell

Entropy
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2-Class Cases:

• What is the entropy of a group in which all 
examples belong to the same class?

– entropy = - 1 log21 = 0

• What is the entropy of a group with 50% 
in either class?

– entropy = -0.5  log20.5 – 0.5  log20.5 =1

Minimum 
impurity

Maximum
impurity

Based on slide by Pedro Domingos

H(x) = �
nX

i=1

P (x = i) log2 P (x = i)Entropy



Sample Entropy
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Sample Entropy 

Entropy 

Entropy H(X) of a random variable X 

Specific conditional entropy H(X|Y=v) of X given Y=v : 

Conditional entropy H(X|Y) of X given Y : 

Mututal information (aka Information Gain) of X and Y : 

Slide by Tom Mitchell



7

Information Gain
• We want to determine which attribute in a given set 

of training feature vectors is most useful for 
discriminating between the classes to be learned.

• Information gain tells us how important a given 
attribute of the feature vectors is.

• We will use it to decide the ordering of attributes in 
the nodes of a decision tree.

Based on slide by Pedro Domingos
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Information Gain
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Information Gain is the mutual information between 

input attribute A and target variable Y 

Information Gain is the expected reduction in entropy 

of target variable Y for data sample S, due to sorting 

on variable A  

Slide by Tom Mitchell
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Calculating Information Gain
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Based on slide by Pedro Domingos
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Entropy-Based Automatic Decision 
Tree Construction

Node 1
What feature 

should be used?

What values?

Training Set X
x1=(f11,f12,…f1m)
x2=(f21,f22,    f2m)

.

.
xn=(fn1,f22,    f2m)

Quinlan suggested information gain in his ID3 system

Based on slide by Pedro Domingos
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Using Information Gain to Construct 
a Decision Tree

Attribute A

v1 vkv2

Full Training Set X

Set X ¢

repeat
recursively
till when?

X¢={xÎX | value(A)=v1}

Choose the attribute A
with highest information
gain for the full training
set at the root of the tree.

Construct child nodes
for each value of A.
Each has an associated
subset of vectors in
which A has a particular
value.

Based on slide by Pedro Domingos



Sample Dataset (was Tennis Played?)
• Columns denote features Xi

• Rows denote labeled instances 
• Class label denotes whether a tennis game was played

hxi, yii

hxi, yii
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Decision Tree Learning Applet 

•  http://www.cs.ualberta.ca/%7Eaixplore/learning/

DecisionTrees/Applet/DecisionTreeApplet.html 

Which Tree Should We Output? 

•  ID3 performs heuristic 

search through space of 

decision trees 

•  It stops at smallest 

acceptable tree. Why? 

Occam’s razor: prefer the 
simplest hypothesis that 
fits the data 
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