
Dimensionality Reduction

Robot Image Credit: Viktoriya Sukhanova © 123RF.com



Feature Selection vs. 
Dimensionality Reduction 

• Feature Selection (last time)
– Select a subset of features.
– When classifying novel patterns, only a small number of features 

need to be computed (i.e., faster classification).
– The measurement units (length, weight, etc.) of the features are 

preserved.

• Dimensionality Reduction (this time)
– Transform features into a smaller set.
– When classifying novel patterns, all features need to be computed.
– The measurement units (length, weight, etc.) of the features are 

lost.
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How Can We Visualize High 
Dimensional Data?

• E.g., 53 blood and urine tests for 65 patients
H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHCH-MCHC

A1 8.0000 4.8200 14.1000 41.0000 85.0000 29.0000 34.0000 
A2 7.3000 5.0200 14.7000 43.0000 86.0000 29.0000 34.0000 
A3 4.3000 4.4800 14.1000 41.0000 91.0000 32.0000 35.0000 
A4 7.5000 4.4700 14.9000 45.0000 101.0000 33.0000 33.0000 
A5 7.3000 5.5200 15.4000 46.0000 84.0000 28.0000 33.0000 
A6 6.9000 4.8600 16.0000 47.0000 97.0000 33.0000 34.0000 
A7 7.8000 4.6800 14.7000 43.0000 92.0000 31.0000 34.0000 
A8 8.6000 4.8200 15.8000 42.0000 88.0000 33.0000 37.0000 
A9 5.1000 4.7100 14.0000 43.0000 92.0000 30.0000 32.0000 
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Features

Difficult to see the correlations between the features...



4

Data Visualization
• Is there a representation better than the raw features?

• Is it really necessary to show all the 53 dimensions?
• … what if there are strong correlations between the 

features?

Could we find the smallest subspace of the 53-D space 
that keeps the most information about the original 
data?

One solution: Principal Component Analysis
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Principle Component Analysis

Orthogonal projection of data onto lower-dimension linear 
space that...

• maximizes variance of projected data (purple line)
• minimizes mean squared distance between 

data point and projections (sum of blue lines)
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• Vectors originating from the center of mass

• Principal component #1 points in the direction of the 
largest variance

• Each subsequent principal component…
• is orthogonal to the previous ones, and 
• points in the directions of the largest variance of the 

residual subspace

The Principal Components
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2D Gaussian Dataset
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1st PCA axis
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2nd PCA axis
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PCA Algorithm
• Given data {x1, …, xn}, compute covariance matrix S

• X is the n x d data matrix
• Compute data mean (average over all rows of X)
• Subtract mean from each row of X  (centering the data)
• Compute covariance matrix S = XTX        ( S is d x d )

• PCA basis vectors are given by the eigenvectors of S
• Q,Λ = numpy.linalg.eig(S)
• {qi, li}i=1..n are the eigenvectors/eigenvalues of S

... l1 ³ l2 ³ … ³ ln

• Larger eigenvalue Þ more important eigenvectors
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Dimensionality Reduction
Can ignore the components of lesser significance

You do lose some information, but if the eigenvalues 
are small, you don’t lose much
– choose only the first k eigenvectors, based on 

their eigenvalues
– final data set has only k dimensions
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PCA

X =

2

666664

0 1 0 1 1 0 0 1 . . .
1 1 0 1 1 1 0 0 . . .
0 0 1 1 1 0 0 0 . . .

...
1 0 1 0 1 0 0 0 . . .

3

777775

Q =

2

666664

0.34 0.23 �0.30 �0.23 . . .
0.04 0.13 �0.40 0.21 . . .

�0.64 0.93 0.61 0.28 . . .
...

...
...

...
. . .

�0.20 �0.83 0.78 �0.93 . . .

3

777775

Q are the eigenvectors of Σ;
columns are ordered by importance!

Slide by Eric Eaton

X has d columns

Q is d x d
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PCA

X =

2

666664

0 1 0 1 1 0 0 1 . . .
1 1 0 1 1 1 0 0 . . .
0 0 1 1 1 0 0 0 . . .

...
1 0 1 0 1 0 0 0 . . .

3

777775

Q =

2

666664

0.34 0.23 �0.30 �0.23 . . .
0.04 0.13 �0.40 0.21 . . .

�0.64 0.93 0.61 0.28 . . .
...

...
...

...
. . .

�0.20 �0.83 0.78 �0.93 . . .

3

777775

Each row of Q corresponds to a feature; keep only first k columns of Q

Slide by Eric Eaton
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PCA
• Each column of Q gives weights for a linear 

combination of the original features

Q =

2

666664

0.34 0.23 �0.30 �0.23 . . .
0.04 0.13 �0.40 0.21 . . .

�0.64 0.93 0.61 0.28 . . .
...

...
...

...
. . .

�0.20 �0.83 0.78 �0.93 . . .

3

777775

= 0.34 feature1 + 0.04 feature2 – 0.64 feature3 + ...

Slide by Eric Eaton
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PCA
• We can apply these formulas to get the new 

representation for each instance x

• The new 2D representation for x3 is given by:

• The re-projected data matrix is given by X = XQ

X =

2

666664

0 1 0 1 1 0 0 1 . . .
1 1 0 1 1 1 0 0 . . .
0 0 1 1 1 0 0 0 . . .

...
1 0 1 0 1 0 0 0 . . .

3

777775

x3 Q =

2

666664

0.34 0.23 �0.30 �0.23 . . .
0.04 0.13 �0.40 0.21 . . .

�0.64 0.93 0.61 0.28 . . .
...

...
...

...
. . .

�0.20 �0.83 0.78 �0.93 . . .

3

777775
Q =

2

666664

0.34 0.23 �0.30 �0.23 . . .
0.04 0.13 �0.40 0.21 . . .

�0.64 0.93 0.61 0.28 . . .
...

...
...

...
. . .

�0.20 �0.83 0.78 �0.93 . . .

3

777775

x31 = 0.34(0) + 0.04(0) - 0.64(1) + ...
x32 = 0.23(0) + 0.13(0) + 0.93(1) + ...  

^

^

Slide by Eric Eaton

^

^ ^



PCA Example

0.61655 0.61544

0.61544 0.71655

Covariance Matrix

-0.73518 -0.67787

0.67787 -0.73518

0.04908 0

0 1.28403

Eigenvectors

Eigenvalues

Center DataData
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PCA Visualization of MNIST Digits
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Challenge: Facial Recognition
• Want to identify specific person, based on facial image
• Robust to glasses, lighting,…
Þ Can’t just use the given 256 x 256 pixels



PCA applications - Eigenfaces
• Eigenfaces are 

the eigenvectors of the covariance matrix of
the probability distribution of the vector space 
of human faces

• Eigenfaces are the ‘standardized face 
ingredients’ derived from the statistical analysis 
of many pictures of human faces

• A human face may be considered to be a 
combination of these standard face ingredients



PCA applications -Eigenfaces
To generate a set of eigenfaces:

1. Large set of digitized images of human faces is taken 
under the same lighting conditions.

2. The images are normalized to line up the eyes and 
mouths. 

3. The eigenvectors of the covariance matrix of the 
statistical distribution of face image vectors are then 
extracted.

4. These eigenvectors are called eigenfaces.



PCA applications -Eigenfaces
• the principal eigenface looks like a bland 

androgynous average human face

http://en.wikipedia.org/wiki/Image:Eigenfaces.png



Eigenfaces



Eigenfaces – Face Recognition
• When properly weighted, eigenfaces can be 

summed together to create an approximate 
gray-scale rendering of a human face. 

• Remarkably few eigenvector terms are needed 
to give a fair likeness of most people's faces 

• Hence eigenfaces provide a means of applying 
data compression to faces for identification 
purposes.

• Similarly, Expert Object Recognition in Video



Eigenfaces

• Experiment and Results
Data used here are from the ORL database of faces. 
Facial images of 16 people each with 10 views are used. 
- Training set contains 16×7 images. 
- Test set contains 16×3 images.

First three eigenfaces :



Classification Using Nearest Neighbor
• Save average coefficients for each person. Classify new face as the 

person with the closest average.
• Recognition accuracy increases with number of eigenfaces until ~15. 

Best recognition rates
Training set  99%
Test set        89%
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Image Compression
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Original Image

• Divide the original 372x492 image into patches:
• Each patch is an instance that contains 12x12 pixels on a grid

• View each as a 144-D vector
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L2 error and PCA dim
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PCA compression: 144D à 60D
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PCA compression: 144D à 16D
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16 most important eigenvectors
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PCA compression: 144D à 6D
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PCA compression: 144D à 3D
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PCA compression: 144D à 1D
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60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...
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2D Discrete Cosine Basis

http://en.wikipedia.org/wiki/Discrete_cosine_transform


