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Feature Selection vs.
Dimensionality Reduction

e Feature Selection (last time)
— Select a subset of features.

— When classifying novel patterns, only a small number of features
need to be computed (i.e., faster classification).

— The measurement units (length, weight, etc.) of the features are
preserved.

* Dimensionality Reduction (this time)

— Transform features into a smaller set.

— When classifying novel patterns, all features need to be computed.

— The measurement units (length, weight, etc.) of the features are
lost.



How Can We Visualize High
Dimensional Data?

e E.g., 53 blood and urine tests for 65 patients

Difficult to see the correlations between the features...

H-WBC | H-RBC H-Hgb H-Hct H-MCV | H-MCH | H-MCHC

A1 8.0000 | 4.8200| 14.1000| 41.0000| 85.0000| 29.0000| 34.0000

A2 7.3000 | 5.0200| 14.7000| 43.0000| 86.0000| 29.0000| 34.0000

n A3 43000 | 4.4800| 14.1000| 41.0000| 91.0000| 32.0000| 35.0000
s A4 7.5000 | 4.4700| 14.9000| 45.0000| 101.0000 [ 33.0000| 33.0000
S A5 7.3000 | 5.5200| 15.4000| 46.0000| 84.0000| 28.0000| 33.0000
*g AB 6.9000 | 4.8600| 16.0000| 47.0000| 97.0000| 33.0000| 34.0000
— A7 7.8000 | 4.6800| 14.7000| 43.0000| 92.0000| 31.0000| 34.0000
A8 8.6000 | 4.8200| 15.8000| 42.0000| 88.0000| 33.0000| 37.0000

A9 51000 | 4.7100| 14.0000 | 43.0000| 92.0000| 30.0000| 32.0000

Features




Data Visualization

e |sthere a representation better than the raw features?

e |sit really necessary to show all the 53 dimensions?

e ... what if there are strong correlations between the
features?

Could we find the smallest subspace of the 53-D space
that keeps the most information about the original
data?

One solution: Principal Component Analysis



Principle Component Analysis
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Orthogonal projection of data onto lower-dimension linear

space that...

* maximizes variance of projected data (purple line)
e minimizes mean squared distance between
data point and projections (sum of blue lines)



The Principal Components

e Vectors originating from the center of mass

e Principal component #1 points in the direction of the
largest variance

e Each subsequent principal component...
e is orthogonal to the previous ones, and

e points in the directions of the largest variance of the
residual subspace



2D Gaussian Dataset




15t PCA axis




2nd PCA axis




PCA Algorithm

e Given data {xy, ..., X}, compute covariance matrix )
e Xisthe n xd data matrix
e Compute data mean (average over all rows of X)
e Subtract mean from each row of X (centering the data)
e Compute covariance matrix X = X™X (Zisdxd)

e PCA basis vectors are given by the eigenvectors of 2
e Q,A\ = numpy.linalg.eig(X)

e {g, A}_, , are the eigenvectors/eigenvalues of £
P P

e Larger eigenvalue = more important eigenvectors
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Dimensionality Reduction

Can ignore the components of lesser significance
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You do lose some information, but if the eigenvalues
are small, you don’t lose much

— choose only the first k eigenvectors, based on
their eigenvalues

— final data set has only k dimensions
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X

T01011001... 7
11011100...
v_|00111000...

110101000...

PCA

X has d columns

Q are the eigenvectors of Z;

columns are ordered by importance!

0.34  0.23
0.04  0.13
—0.64  0.93
| —0.20 —0.83

Qisdxd
—0.30 —0.23
—0.40 0.21
0.601 0.28

0.7 —0.93




PCA

"01011001...
11011100...
¥ _|00111000...

010101000...

Each row of Q corresponds to a feature; keep only first k columns of Q

T 034 0.23 N0.30 —0.23
0.04 0.13 -0 0.2
Q= | —064 093 061

- —0.20 —0.83

0.78 —0.93



PCA

e Each column of Q gives weights for a linear
combination of the original features
| 0.34 0.23 0.30 —0.23

0.04 0.13 -0 0.2
o= | 064 093 061

—0.20| —0.33 0.7 —0.93

I

= 0.34 feature1 + 0.04 feature2 — 0.64 feature3 + ...
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PCA

e We can apply these formulas to get the new
representation for each instance x

"01011001... 0.34] [ 0.23

11011100... 0.04 | 0.13

x = [00TTT000 s 5 _ | —064 | 093
010101000... | —0.20 |—0.83

e The new 2D representation for x; is given by:
X3, = 0.34(0) + 0.04(0) - 0.64(1) + ...
X35 = 0.23(0) + 0.13(0) + 0.93(1) + ...

e The re-projected data matrix is given by )I(\ = XQA

15



PCA Example

Data Center Data
X Y X Y Covariance Matrix Eigenvectors
2524 69 | .49
05 | 0.7 131 | -1 0.61655 | 0.61544 E> -0.73518 -0.67787
2229 39 1 .99 0.61544 | 0.71655 0.67787 -0.73518
1.9 |22 09 | .29 )
3.1 | 3.0 E> 129 | 1.09 Eigenvalues
23127 49 | .79 0.04908 0
2 |16 19 | -31
1] 1.1 -81 | -.81 0 1.28403
151 1.6 -31 | -.31
.1 109 -71 | -1.01 N n

(Zomause Tiosocar




PCA Visualization of MNIST D

PCA (16% Variance Expained)
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Challenge: Facial Recognition

e Want to identify specific person, based on facial image

e Robust to glasses, lighting, ...

— Can't just use the given 256 x 256 pixels

18



PCA applications - Eigenfaces

* Eigenfaces are
the eigenvectors of the covariance matrix of

the probability distribution of the vector space
of human faces

« Eigenfaces are the ‘standardized face
ingredients’ derived from the statistical analysis

of many pictures of human faces

* A human face may be considered to be a
combination of these standard face ingredients



PCA applications -Eigenfaces

To generate a set of eigenfaces:

1. Large set of digitized images of human faces is taken
under the same lighting conditions.

2. The images are normalized to line up the eyes and
mouths.

3. The eigenvectors of the covariance matrix of the
statistical distribution of face image vectors are then
extracted.

4. These eigenvectors are called eigenfaces.



PCA applications -Eigenfaces

* the principal eigenface looks like a bland
androgynous average human face

http://en.wikipedia.org/wiki/Image:Eigenfaces.png



Eigenfaces




Eigenfaces — Face Recognition

When properly weighted, eigenfaces can be
summed together to create an approximate
gray-scale rendering of a human face.

Remarkably few eigenvector terms are needed
to give a fair likeness of most people's faces

Hence eigenfaces provide a means of applying
data compression to faces for identification
purposes.

Similarly, Expert Object Recognition in Video




Eigenfaces

« Experiment and Results

Data used here are from the ORL database of faces.
Facial images of 16 people each with 10 views are used.
- Training set contains 16 X 7 images.

Test set contains 16 X 3 images.

First three eigenfaces :




person with the closest average.

Classification Using Nearest Neighbor

Save average coefficients for each person. Classify new face as the

Recognition accuracy increases with number of eigenfaces until ~15.

accuracy

0.8

0.6

0.4

number of eigenfaces

¢ validation set ® training set

i
HO00000000000 000000000
-
0 50 100 130

Best recognition rates
Training set 99%
Test set 89%




Image Compression



Original Image

Divide the original 372x492 image into patches:
e Each patch is an instance that contains 12x12 pixels on a grid

View each as a 144-D vector

27



Relative rec. error
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PCA compressmn 144D % 60D




PCA compression: 144D - 16D
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PCA compressmn 144D - 6D




6 most important eigenvectors
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PCA compressmn 144D - 3D




3 most important eigenvectors
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PCA compression: 144D - 1D




60 most important eigenvectors
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Looks like the discrete cosine bases of JPGI...




2D Discrete Cosine Basis
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