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Soft Clustering

• Clustering typically assumes that each instance is given a 
“hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or for an 
instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance belongs to 
each of a set of clusters.

• Each instance is assigned a probability distribution across a set 
of discovered categories (probabilities of all categories must 
sum to 1).



Gaussian Mixture Models

• Recall the Gaussian distribution:
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The GMM assumption
• There are k components. The 

i’th component is called wi

• Component wi has an 
associated mean vector µi
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The GMM assumption
• There are k components. The 

i’th component is called wi

• Component wi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix s2I

Assume that each datapoint is 
generated according to the 
following recipe: 
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The GMM assumption
• There are k components. The 

i’th component is called wi

• Component wi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix s2I

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random: 
choose component i with 
probability P(wi).
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The GMM assumption
• There are k components. The 

i’th component is called wi

• Component wi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix s2I

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random: 
choose component i with 
probability P(wi).

2. Datapoint ~ N(µi, s2I )
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The General GMM assumption

µ1

µ2

µ3

• There are k components. The 
i’th component is called wi

• Component wi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix Si 

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random: 
choose component i with 
probability P(wi).

2. Datapoint ~ N(µi , Si )
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Mixture Models
• Formally a Mixture Model is the weighted sum of a 

number of pdfs where the weights are determined by a 
distribution  

p(x) = ⇡0f0(x) + ⇡1f1(x) + ⇡2f2(x) + . . . + ⇡kfk(x)

where
kX

i=0

⇡i = 1

⇡

p(x) =
kX

i=0

⇡ifi(x)
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Gaussian Mixture Models
• GMM: the weighted sum of a number of Gaussians 

where the weights are determined by a distribution  

where
kX

i=0

⇡i = 1

⇡

p(x) = ⇡0N(x|µ0,⌃0) + ⇡1N(x|µ1,⌃1) + . . . + ⇡kN(x|µk,⌃k)

p(x) =
kX

i=0

⇡iN(x|µk,⌃k)
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Just evaluate a 
Gaussian at xk
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Expectation-Maximization for GMMs
Iterate until convergence:
On the t th iteration let our estimates be

lt = { μ1(t), μ2(t) … μc(t) }

E-step: Compute “expected” classes of all datapoints for each class
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M-step:  Estimate μ given our data’s class membership distributions
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be
lt = { μ1(t), μ2(t) … μc(t), S1(t), S2(t) … Sc(t), p1(t), p2(t) … pc(t) }

E-step: Compute “expected” clusters of all datapoints
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M-step: Estimate μ, Σ given our data’s class membership distributions

pi(t) is shorthand 
for estimate of 
P(wi) on t’th 
iteration
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Gaussian at xk
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Gaussian 
Mixture 

Example: 
Start
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After first 
iteration
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After 2nd 
iteration
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After 3rd 
iteration
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After 4th 
iteration



Clustering with Gaussian Mixtures: Slide 18Copyright © 2001, 2004, Andrew W. Moore

After 5th 
iteration
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After 6th 
iteration
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After 20th 
iteration
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Closing Thoughts
• GMMs are a ”soft” clustering algorithm, that 

can be learned using EM.
• If you keep iterating EM, you will converge, 

but only to a local optimum.
• You will see EM in other contexts as well, 

when doing inference with graphical models 
is hard – like Hidden Markov Models
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