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Unsupervised Learning
• Supervised learning used labeled data pairs (x, y) to 

learn a function f : X→Y
– But, what if we don’t have labels?

• No labels = unsupervised learning



Clustering

Clustering: group together similar points and 
represent them with a single token

Key Design Choices:
1) What makes two data points similar?
2) How do we compute an overall grouping from 
pairwise similarities? 
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How might we cluster?

• K-means
– Iteratively re-assign points to the nearest cluster 

center

• Agglomerative clustering
– Start with each point as its own cluster and 

iteratively merge the closest clusters



K-Means Clustering
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K-Means Clustering

K-Means ( k , X )
• Randomly choose k cluster 

center locations (centroids)
• Loop until convergence

• Assign each point to the 
cluster of the closest centroid

• Re-estimate the cluster 
centroids based on the data 
assigned to each cluster
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K-Means Objective Function

• K-means finds a local optimum of the 
following objective function:
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and µi = mean(Si)
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K-Means pros and cons

• Pros
• Finds cluster centers that minimize 

variance (good representation of data)
• Easy to implement

• Cons
• Need to choose K
• Sensitive to outliers
• Prone to local minima
• All clusters have the same parameters 

(e.g., distance measure is non-adaptive)
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K-Means: initialization

• Very sensitive to the initial points
– Do many runs of K-Means, each with different initial 

centroids
– Seed the centroids using a better method than 

randomly choosing the centroids
• e.g., Farthest-first sampling

• Must manually choose k
– Learn the optimal k for the clustering
• Note that this requires a performance measure



K-medoids

• Just like K-means except
– Represent the cluster with one of its members, 

rather than the mean of its members
– Choose the member (data point) that minimizes 

cluster dissimilarity

• Applicable when a mean is not meaningful
– E.g., clustering values of hue
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Agglomerative clustering
How to define cluster similarity?
- Average distance between points, 

maximum distance, minimum distance
- Distance between means or medoids

How many clusters?
- Clustering creates a dendrogram (a tree)
- Threshold based on max number of 

clusters or based on distance between 
merges

di
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Agglomerative clustering demo


