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INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

 
TX
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AdaBoost

+ 
+  

t = T

+ 

+  

+  + 
+ 

+ + 

• Final model is a weighted combination of members
– Each member weighted by its importance
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AdaBoost
[Freund & Schapire, 1997]
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We weight instances differently when 
learning the model, either in the cost 
function or by bootstrap replication.



Base Learner Requirements
• AdaBoost works best with “weak” learners

– Should not be complex
– Typically high bias classifiers
– Works even when weak learner has an error rate just 

slightly under 0.5   (i.e., just slightly better than random)

• Can prove training error goes to 0 in O(log n) iterations

• Examples:
– Decision stumps (1 level decision trees)
– Depth-limited decision trees
– Linear classifiers
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Error is the sum the weights of all 
misclassified instances
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This is the same as:

Essentially this emphasizes misclassified instances.

wt+1,i = wt,i ⇥
⇢

e��t if ht(xi) = yi
e�t if ht(xi) 6= yi

will be ≤ 1

will be ≥ 1
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Member classifiers with less 
error are given more weight in 
the final ensemble hypothesis

Final prediction is a weighted 
combination of each 
member’s prediction



Dynamic Behavior of AdaBoost
• If a point is repeatedly misclassified...

– Each time, its weight is increased
– Eventually it will be emphasized enough to 

generate a hypothesis that correctly predicts it

• Successive member hypotheses focus on the 
hardest parts of the instance space
– Instances with highest weight are often outliers
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AdaBoost and Overfitting
• VC Theory predicts that AdaBoost will overfit as the 

number of weak classifiers T grows large
– Hypothesis keeps growing more complex

• In practice, AdaBoost often does not overfit, 
performing significantly better than VC theory suggests

• AdaBoost does not explicitly regularize the model, and 
yet generalizes well
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Train

Test
AdaBoost on OCR data with 

C4.5 as the base learner

Explaining Why AdaBoost Works

• Empirically, boosting resists overfitting
• Note that it continues to drive down the test error 

even AFTER the training error reaches zero
• Boosting maximizing confidence 

14[Figure from Schapire: “Explaining AdaBoost”] 



AdaBoost in Practice
Strengths:
• Fast and simple to program
• No parameters to tune (besides T)
• No assumptions on weak learner

When boosting can fail:
• Given insufficient data
• Overly complex weak hypotheses
• Can be susceptible to noise
• When there are a large number of outliers
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Error Rates on 27 
Benchmark Data Sets

Boosted Decision Trees
• Boosted decision trees are one of 

the best “off-the-shelf” classifiers
– i.e., no parameter tuning

• Limit member hypothesis 
complexity by limiting tree depth

• Boosting methods are typically 
used with trees in practice

16[Figure from Freud and Schapire: “A Short Introduction to Boosting”] 

“AdaBoost with trees is the best off-the-shelf classifier in the world” -Breiman, 1996
(Also, see results by Caruana & Niculescu-Mizil, ICML 2006)


