These slides were assembled by Byron Boots based on the slides assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.
Adaboost

1: Initialize a vector of n uniform weights w_1
2: for $t = 1, \ldots, T$
3: Train model h_t on X, y with weights w_t
4: Compute the weighted training error rate of h_t
5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right)$
6: Update all instance weights:
 $$w_{t+1,i} = w_{t,i} \exp \left(-\beta_t y_i h_t(x_i) \right)$$
7: Normalize w_{t+1} to be a distribution
8: end for
9: Return the hypothesis
 $$H(x) = \text{sign} \left(\sum_{t=1}^{T} \beta_t h_t(x) \right)$$

• Final model is a weighted combination of members
 – Each member weighted by its importance
AdaBoost

[Freund & Schapire, 1997]

INPUT: training data $X, y = \{(x_i, y_i)\}_{i=1}^n$, the number of iterations T

1: Initialize a vector of n uniform weights $w_1 = [\frac{1}{n}, \ldots, \frac{1}{n}]$
2: for $t = 1, \ldots, T$
3: Train model h_t on X, y with instance weights w_t
4: Compute the weighted training error rate of h_t:
 \[\epsilon_t = \sum_{i: y_i \neq h_t(x_i)} w_{t,i} \]
5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$
6: Update all instance weights:
 \[w_{t+1,i} = w_{t,i} \exp(-\beta_t y_i h_t(x_i)) \quad \forall i = 1, \ldots, n \]
7: Normalize w_{t+1} to be a distribution:
 \[w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^n w_{t+1,j}} \quad \forall i = 1, \ldots, n \]
8: end for
9: Return the hypothesis
 \[H(x) = \text{sign} \left(\sum_{t=1}^T \beta_t h_t(x) \right) \]
AdaBoost

INPUT: training data $X, y = \{(x_i, y_i)\}_{i=1}^{n}$, the number of iterations T

1: Initialize a vector of n uniform weights $w_1 = [\frac{1}{n}, \ldots, \frac{1}{n}]$

2: **for** $t = 1, \ldots, T$

3: Train model h_t on X, y with instance weights w_t

4: Compute the weighted training error rate of h_t:
 \[\epsilon_t = \sum_{i : y_i \neq h_t(x_i)} w_{t,i} \]

5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

6: Update all instance weights:
 \[w_{t+1,i} = w_{t,i} \exp (-\beta_t y_i h_t(x_i)) \quad \forall i = 1, \ldots, n \]

7: Normalize w_{t+1} to be a distribution:
 \[w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^{n} w_{t+1,j}} \quad \forall i = 1, \ldots, n \]

8: **end for**

9: **Return** the hypothesis
 \[H(x) = \text{sign} \left(\sum_{t=1}^{T} \beta_t h_t(x) \right) \]

w_t is a vector of weights over the instances at iteration t

All points start with equal weight
AdaBoost

INPUT: training data $X, y = \{(x_i, y_i)\}_{i=1}^{n}$, the number of iterations T

1: Initialize a vector of n uniform weights $w_1 = [\frac{1}{n}, \ldots, \frac{1}{n}]$

2: for $t = 1, \ldots, T$

3: Train model h_t on X, y with instance weights w_t

4: Compute the weighted training error rate of h_t:

$$
\epsilon_t = \sum_{i: y_i \neq h_t(x_i)} w_{t,i}
$$

5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right)$

6: Update all instance weights:

$$
w_{t+1,i} = w_{t,i} \exp \left(-\beta_t y_i h_t(x_i) \right)
$$

7: Normalize w_{t+1} to be a distribution:

$$
w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^{n} w_{t+1,j}} \quad \forall i = 1, \ldots, n
$$

8: end for

9: Return the hypothesis

$$
H(x) = \text{sign} \left(\sum_{t=1}^{T} \beta_t h_t(x) \right)
$$

We weight instances differently when learning the model, either in the cost function or by bootstrap replication.
Base Learner Requirements

• AdaBoost works best with “weak” learners
 – Should not be complex
 – Typically high bias classifiers
 – Works even when weak learner has an error rate just slightly under 0.5 (i.e., just slightly better than random)
 • Can prove training error goes to 0 in O(log n) iterations

• Examples:
 – Decision stumps (1 level decision trees)
 – Depth-limited decision trees
 – Linear classifiers
AdaBoost

INPUT: training data $X, y = \{(x_i, y_i)\}_{i=1}^n$, the number of iterations T

1: Initialize a vector of n uniform weights $w_1 = [\frac{1}{n}, \ldots, \frac{1}{n}]$

2: for $t = 1, \ldots, T$

3: Train model h_t on X, y with instance weights w_t

4: Compute the weighted training error rate of h_t:

$$
\epsilon_t = \sum_{i: y_i \neq h_t(x_i)} w_{t,i}
$$

5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right)$

6: Update all instance weights:

$$
w_{t+1,i} = w_{t,i} \exp \left(-\beta_t y_i h_t(x_i) \right) \quad \forall i = 1, \ldots, n
$$

7: Normalize w_{t+1} to be a distribution:

$$
w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^n w_{t+1,j}} \quad \forall i = 1, \ldots, n
$$

8: end for

9: Return the hypothesis

$$
H(x) = \text{sign} \left(\sum_{t=1}^T \beta_t h_t(x) \right)
$$

Error is the sum the weights of all misclassified instances
AdaBoost

INPUT: training data $X, y = \{ (x_i, y_i) \}_{i=1}^n$, the number of iterations T

1. Initialize a vector of n uniform weights $w_1 = [\frac{1}{n}, \ldots, \frac{1}{n}]$

2. for $t = 1, \ldots, T$

3. Train model h_t on X, y with instance weights w_t

4. Compute the weighted training error rate of h_t:
 \[\epsilon_t = \sum_{i : y_i \neq h_t(x_i)} w_{t,i} \]

5. Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

6. Update all instance weights:
 \[w_{t+1,i} = w_{t,i} \exp (-\beta_t y_i h_t(x_i)) \]

7. Normalize w_{t+1} to be a distribution:
 \[w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^n w_{t+1,j}} \quad \forall i \]

8. end for

9. Return the hypothesis
 \[H(x) = \text{sign} \left(\sum_{t=1}^T \beta_t h_t(x) \right) \]

- β_t measures the importance of h_t
- If $\epsilon_t \leq 0.5$, then $\beta_t \geq 0$
 - Trivial, otherwise flip h_t’s predictions
- β_t grows as h_t’s error shrinks
AdaBoost

INPUT: training data \((X, y)\), the number of iterations \(T\)

1: Initialize a vector of uniform weights
2: for \(t = 1, \ldots, T\) do
3: Train model with current \(w\)
4: Compute the weighted training error rate of \(h_t\)
5: Choose \(\beta_t = \frac{2\ln(1/\epsilon_t)}{\epsilon_t}\)
6: Update all instance weights:

 \[
 w_{t+1,i} = w_{t,i} \exp(-\beta_t y_i h_t(x_i)) \quad \forall i = 1, \ldots, n
 \]
7: Normalize \(w_{t+1}\) to be a distribution:

 \[
 w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^n w_{t+1,j}} \quad \forall i = 1, \ldots, n
 \]
8: end for
9: Return the hypothesis

 \[
 H(x) = \text{sign}\left(\sum_{t=1}^T \beta_t h_t(x)\right)
 \]

This is the same as:

\[
\begin{aligned}
 w_{t+1,i} &= w_{t,i} \times \\
 &\begin{cases}
 e^{-\beta_t} & \text{if } h_t(x_i) = y_i \\
 e^{\beta_t} & \text{if } h_t(x_i) \neq y_i
 \end{cases}
\end{aligned}
\]

will be \(\leq 1\)

will be \(\geq 1\)

Essentially this emphasizes misclassified instances.
Adaboost

INPUT: training data $X, y = \{(x_i, y_i)\}_{i=1}^n$, the number of iterations T

1: Initialize a vector of n uniform weights $w_1 = [\frac{1}{n}, \ldots, \frac{1}{n}]$

2: for $t = 1, \ldots, T$

3: Train model h_t on X, y with instance weights w_t

4: Compute the weighted training error rate of h_t:

$$\epsilon_t = \sum_{i : y_i \neq h_t(x_i)} w_{t,i}$$

5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp \left(-\beta_t y_i h_t(x_i) \right) \quad \forall i = 1, \ldots, n$$

7: Normalize w_{t+1} to be a distribution:

$$w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^n w_{t+1,j}} \quad \forall i = 1, \ldots, n$$

8: end for

9: **Return** the hypothesis

$$H(x) = \text{sign} \left(\sum_{t=1}^T \beta_t h_t(x) \right)$$
Adaboost

INPUT: training data $X, y = \{(x_i, y_i)\}_{i=1}^n$, the number of iterations T

1: Initialize a vector of n uniform weights $w_1 = [\frac{1}{n}, \ldots, \frac{1}{n}]$

2: for $t = 1, \ldots, T$

3: Train model h_t on X, y with instance weights w_t

4: Compute the weighted training error rate of h_t:

$$
\epsilon_t = \sum_{i : y_i \neq h_t(x_i)} w_{t,i}
$$

5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

6: Update all instance weights:

$$
w_{t+1,i} = w_{t,i} \exp (-\beta_t y_i h_t(x_i)) \quad \forall i = 1, \ldots, n
$$

7: Normalize w_{t+1} to be a distribution:

$$
w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^n w_{t+1,j}} \quad \forall i = 1, \ldots, n
$$

8: end for

9: Return the hypothesis

$$
H(x) = \text{sign} \left(\sum_{t=1}^T \beta_t h_t(x) \right)
$$

Member classifiers with less error are given more weight in the final ensemble hypothesis

Final prediction is a weighted combination of each member’s prediction
Dynamic Behavior of AdaBoost

• If a point is repeatedly misclassified...
 – Each time, its weight is increased
 – Eventually it will be emphasized enough to generate a hypothesis that correctly predicts it

• Successive member hypotheses focus on the hardest parts of the instance space
 – Instances with highest weight are often outliers
AdaBoost and Overfitting

• VC Theory predicts that AdaBoost will overfit as the number of weak classifiers T grows large
 – Hypothesis keeps growing more complex

• In practice, AdaBoost often does not overfit, performing significantly better than VC theory suggests

• AdaBoost does not explicitly regularize the model, and yet generalizes well
Explaining Why AdaBoost Works

- Empirically, boosting resists overfitting
- Note that it continues to drive down the test error even AFTER the training error reaches zero
- Boosting maximizing confidence
AdaBoost in Practice

Strengths:
• Fast and simple to program
• No parameters to tune (besides T)
• No assumptions on weak learner

When boosting can fail:
• Given insufficient data
• Overly complex weak hypotheses
• Can be susceptible to noise
• When there are a large number of outliers
Boosted Decision Trees

- Boosted decision trees are one of the best “off-the-shelf” classifiers – i.e., no parameter tuning
- Limit member hypothesis complexity by limiting tree depth
- Boosting methods are typically used with trees in practice

“AdaBoost with trees is the best off-the-shelf classifier in the world” - Breiman, 1996
(Also, see results by Caruana & Niculescu-Mizil, ICML 2006)