
Ensemble Learning
(continued)

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Byron Boots based on the slides assembled by Eric Eaton, with grateful
acknowledgement of the many others who made their course materials freely available online. Feel free to reuse
or adapt these slides for your own academic purposes, provided that you include proper attribution.

+

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

AdaBoost

+
+

t = T

+

+

+ +
+

+ +

• Final model is a weighted combination of members
– Each member weighted by its importance

2

AdaBoost
[Freund & Schapire, 1997]

3

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

AdaBoost

4

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

wt is a vector of weights
over the instances at
iteration t

All points start with equal
weight

AdaBoost

5

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

We weight instances differently when
learning the model, either in the cost
function or by bootstrap replication.

Base Learner Requirements
• AdaBoost works best with “weak” learners

– Should not be complex
– Typically high bias classifiers
– Works even when weak learner has an error rate just

slightly under 0.5 (i.e., just slightly better than random)

• Can prove training error goes to 0 in O(log n) iterations

• Examples:
– Decision stumps (1 level decision trees)
– Depth-limited decision trees
– Linear classifiers

6

AdaBoost

7

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

Error is the sum the weights of all
misclassified instances

AdaBoost

8

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

• βt measures the importance of ht
• If , then
o Trivial, otherwise flip ht’s predictions

• βt grows as ht’s error shrinks

✏t  0.5 �t � 0

AdaBoost

9

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

This is the same as:

Essentially this emphasizes misclassified instances.

wt+1,i = wt,i ⇥
⇢

e��t if ht(xi) = yi
e�t if ht(xi) 6= yi

will be ≤ 1

will be ≥ 1

AdaBoost

10

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

Make wt+1 sum to 1

AdaBoost

11

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

INPUT: training data X, y = {(xi, yi)}ni=1,
the number of iterations T

1: Initialize a vector of n uniform weights w1 =
⇥
1
n , . . . ,

1
n

⇤

2: for t = 1, . . . , T
3: Train model ht on X, y with instance weights wt

4: Compute the weighted training error rate of ht:

✏t =
X

i:yi 6=ht(xi)

wt,i

5: Choose �t =
1
2 ln

⇣
1�✏t
✏t

⌘

6: Update all instance weights:

wt+1,i = wt,i exp (��tyiht(xi)) 8i = 1, . . . , n

7: Normalize wt+1 to be a distribution:

wt+1,i =
wt+1,iPn
j=1 wt+1,j

8i = 1, . . . , n

8: end for
9: Return the hypothesis

H(x) = sign

TX

t=1

�tht(x)

!

Member classifiers with less
error are given more weight in
the final ensemble hypothesis

Final prediction is a weighted
combination of each
member’s prediction

Dynamic Behavior of AdaBoost
• If a point is repeatedly misclassified...

– Each time, its weight is increased
– Eventually it will be emphasized enough to

generate a hypothesis that correctly predicts it

• Successive member hypotheses focus on the
hardest parts of the instance space
– Instances with highest weight are often outliers

12

AdaBoost and Overfitting
• VC Theory predicts that AdaBoost will overfit as the

number of weak classifiers T grows large
– Hypothesis keeps growing more complex

• In practice, AdaBoost often does not overfit,
performing significantly better than VC theory suggests

• AdaBoost does not explicitly regularize the model, and
yet generalizes well

13

Train

Test
AdaBoost on OCR data with

C4.5 as the base learner

Explaining Why AdaBoost Works

• Empirically, boosting resists overfitting
• Note that it continues to drive down the test error

even AFTER the training error reaches zero
• Boosting maximizing confidence

14[Figure from Schapire: “Explaining AdaBoost”]

AdaBoost in Practice
Strengths:
• Fast and simple to program
• No parameters to tune (besides T)
• No assumptions on weak learner

When boosting can fail:
• Given insufficient data
• Overly complex weak hypotheses
• Can be susceptible to noise
• When there are a large number of outliers

15

Error Rates on 27
Benchmark Data Sets

Boosted Decision Trees
• Boosted decision trees are one of

the best “off-the-shelf” classifiers
– i.e., no parameter tuning

• Limit member hypothesis
complexity by limiting tree depth

• Boosting methods are typically
used with trees in practice

16[Figure from Freud and Schapire: “A Short Introduction to Boosting”]

“AdaBoost with trees is the best off-the-shelf classifier in the world” -Breiman, 1996
(Also, see results by Caruana & Niculescu-Mizil, ICML 2006)

