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Last Time: SVMs, Maximizing Margin

The SVM problem (assuming data is linearly separable):
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Based on example by Andrew Ng
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Understanding the Hyperplane

5

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi  �1 if yi = �1

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi  �1 if yi = �1

θ

x

Assume θ0 = 0 so that the 

hyperplane is centered at 

the origin, and that d = 2

✓|x = k✓k2 kxk2 cos ✓| {z }
p

= pk✓k2

Based on example by Andrew Ng



Maximizing the Margin
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Support Vectors
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Size of the Margin

For the support vectors, we have                         

• p is the length of the projection of the SVs onto θ

8

θ
-θ

pk✓k2 = ±1

p

p =
1

k✓k2

margin = 2p =
2

k✓k2

Therefore,

margin



The SVM Dual Problem

The primal SVM problem was given as

Can solve it more efficiently by taking the Lagrangian dual

• Duality is a common idea in optimization

• It transforms a difficult optimization problem into a simpler one

• Key idea:  introduce slack variables αi for each constraint 

– αi indicates how important a particular constraint is to the solution
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The SVM Dual Problem

• The Lagrangian is given by

• We must minimize over θ and maximize over α
• At optimal solution, partials w.r.t θ’s are 0

Solve by a bunch of algebra and calculus ... 

and we obtain ...
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SVM Dual Representation

The decision function is given by
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Understanding the Dual
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Understanding the Dual

Intuitively, we should be more careful around points 

near the margin
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Understanding the Dual

In the solution, either:

• αi > 0 and the constraint is tight  (                         )  

Øpoint is a support vector

• αi = 0 

Øpoint is not a support vector
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Deploying the Solution

Given the optimal solution α*, optimal weights are
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What if Data Are Not 

Linearly Separable?

• Cannot find θ that satisfies

• Introduce slack variables xi

• New problem:
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Strengths of SVMs

• Good generalization in theory

• Good generalization in practice

• Work well with few training instances

• Find globally best model

• Efficient algorithms

• Amenable to the kernel trick …


