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Strengths of SVMs
• Good generalization 

– in theory

– in practice

• Works well with few training instances

• Find globally best model

• Efficient algorithms

• Amenable to the kernel trick



Minor Notation Change
To better match notation used in SVMs

...and to make matrix formulas simpler

We will drop using superscripts for the i th instance
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x(i)

y(i)

xi

x(i)
j xij

yi

i th instance

i th instance label

j th feature of i th instance

Bold denotes 
vector

Non-bold
denotes scalar
Non-bold
denotes scalar



Linear Separators

• Training instances

• Model parameters

• Hyperplane

• Decision function

y 2 {�1, 1}
x 2 Rd+1, x0 = 1

✓ 2 Rd+1

✓|x = h✓,xi = 0

Recall:
Inner (dot) product:

hu,vi = u · v = u|v

=
X

i

uivi

h(x) = sign(✓|x) = sign(h✓,xi)



Intuitions
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A �Good� Separator



Noise in the Observations



Ruling Out Some Separators



Lots of Noise



Only One Separator Remains



Maximizing the Margin



�Fat� Separators



�Fat� Separators

margin



Why Maximize Margin
Increasing margin reduces capacity
• i.e., fewer possible models

Remember Lesson from Learning Theory:

• If the following holds:
– H is sufficiently constrained in size 

– and/or the size of the training data set n is large, 

then low training error is likely to be evidence of low 
generalization error
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Alternative View of Logistic Regression
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h✓(x) =
1

1 + e�✓Tx

J(✓) = �
nX

i=1

[yi log h✓(xi) + (1� yi) log (1� h✓(xi))]

min
✓

J(✓)

h✓(x) = g(z)

z = ✓Txh✓(x) = g(z)

z = ✓Tx

If            , we want    ,

h✓(x) ⇡ 1

h✓(x) ⇡ 0

y = 1

y = 0

✓Tx � 0

✓Tx ⌧ 0

If            , we want    , ✓Tx � 0

✓Tx ⌧ 0

y = 1

y = 0

h✓(x) ⇡ 1

h✓(x) ⇡ 0

cost1(✓
|xi) cost0(✓

|xi)

Based on slide by Andrew Ng



Alternative View of Logistic Regression
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Cost of example: �yi log h✓(xi)� (1� yi) log (1� h✓(xi))
h✓(x) = g(z)

z = ✓Tx

If             (want                   ):✓Tx � 0

✓Tx ⌧ 0

y = 1

y = 0

If             (want                   ):

✓Tx � 0

✓Tx ⌧ 0

y = 1

y = 0

h✓(x) =
1

1 + e�✓Tx

Based on slide by Andrew Ng



Support Vector Machine
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-1 1 -1 1

If             (want                  ):y = 1

y = 0

If                 (want                     ):✓|x � 1 ✓|x  �1

`hinge(h(x)) = max(0, 1� y · h(x))

Based on slide by Andrew Ng

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi  �1 if yi = �1



Support Vector Machine
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min
✓

C
nX

i=1

[yicost1(✓
|xi) + (1� yi) cost0(✓

|xi)] +
1

2

dX

j=1

✓2j

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi  �1 if yi = �1

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi  �1 if yi = �1

with C = 1

min
✓

1

2

dX

j=1

✓2j

s.t. yi(✓
|xi) � 1

y = +1 / -1

y = 1 / 0


