Learning Theory:
Why ML Works
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These slides were assembled by Byron Boots, with only minor modifications from Eric Eaton’s slides and
grateful acknowledgement to the many others who made their course materials freely available online. Feel

free to reuse or adapt these slides for your own academic purposes, provided that you include proper
attribution.



Computational Learning Theory

Entire subfield devoted to the

mathematical analysis of
machine learning algorithms
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* PAC (probably approximately

correct) learning = boosting COMPUTATIONAL

* VC (Vapnik—Chervonenkis) theory LEARNING THEORY
—> support vector machines

Annual conference: Conference on Learning Theory (COLT)



Computational Learning Theory

Fundamental Question: What general laws constrain a
system’s ability to learn?

Seeks theory to relate:

* Probability of successful learning

 Number of training examples

 Complexity of hypothesis space

* Accuracy to which target function is approximated

* Manner in which training examples should be presented

Based on slide by Tom Mitchell



Sample Complexity

Assume that f: X — {0, 1} is the target function

How many training examples are sufficient to learn the
target function f ?

1. If learner proposed instances as queries to teacher
e Learner proposes instance x, teacher provides f(x)
2. If teacher (who knows f) provides training examples
* Teacher provides labeled examples in form <x, f(x)>
3. If some random process (e.g., nature) proposes instances

 Instance x generated randomly, teacher provides f(x)

Based on slide by Tom Mitchell



Function Approximation: The Big Picture

Instance Space X' = {0, 1}d Hypothesis Space
= (r1,T2,...,2q9) € X H={h|h:X+—{0,1}}
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if d = 20, |X| = 220 | = 2% = 22%

* How many labeled instances are needed to determine which of
the 922 hypotheses are correct?
— All 2%% instances in X’ must be labeled!

 Generalizing beyond the training data (inductive inference) is
impossible unless we add more assumptions (e.g., priors over H)

Based on example by Tom Mitchell



Bias-Variance Decomposition of Squared Error

* Assumethat y = f(x) + ¢

— Noise € is sampled from a normal distribution with O
mean and variance 62: € ~ N (0, 0°)

— Noise lower-bounds the performance (error) we can achieve

e Recall the following objective function:
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* We can view this as an approximation of the expected
value of the squared error: E (y — hg (z))°



Bias-Variance Decomposition of Squared Error

El(y — he(x))’] = E[(y — f(z) + f(x) — he(x))]
=E[(y - f())’] + E[(f(z) — he(z))"]
+2E[(f(z) — he(z))(y — f())]
=E[(y - f())’] + E[(f(z) — he())’]
+2 (ElTtsilo(@)] + Elp#(a)] ~ ElDole)] - BlF)’)
— t== =
cancels cancels

Therefore,

El(y — he(z))*] = El(y — f(2))*] + E[(f (=)

— ho(z))"]
= B[] + E[(f(x) — ho(x))’]

Aside: A
Definition of Variance

var(z) = E[(z — E[2])"]

This is actually var(e), since mean is 0




Bias-Variance Decomposition of Squared Error
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Therefore,
El(y — ho(x))’]

J

variance

bias

noise

bias(he(x))* + var(hg(x)) + o

E[(y — ho())]



Regularization

* Linear regression objective function
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model fit to data regularization

— A is the regularization parameter (A > 0 )



lllustration of Bias-Variance
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Figures provided by by Max Welling
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lllustration of Bias-Variance
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* Reducing training error drives down bias,

but ignores variance

Figure provided by by Max Welling



