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Classification Based on Probability
• Instead of just predicting the class, give the probability 

of the instance being that class
– i.e., learn

• Comparison to perceptron:
– Perceptron doesn’t produce probability estimate
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p(y | x)



Logistic Regression
• Takes a probabilistic approach to learning 

discriminative functions (i.e., a classifier)

• should give
– Want

• Logistic regression model:
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h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

0  h✓(x)  1

g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx

Logistic / Sigmoid Function

h✓(x) p(y = 1 | x;✓)



Interpretation of Hypothesis Output
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= estimated 

à Tell patient that 70% chance of tumor being malignant 

Example:  Cancer diagnosis from tumor size

h✓(x) p(y = 1 | x;✓)

x =


x0

x1

�
=


1

tumorSize

�

h✓(x) = 0.7

p(y = 0 | x;✓) + p(y = 1 | x;✓) = 1Note that:

Based on example by Andrew Ng

Therefore, p(y = 0 | x;✓) = 1� p(y = 1 | x;✓)



Another Interpretation
• Equivalently, logistic regression assumes that

• In other words, logistic regression assumes that 
the log odds is a linear function of 
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log
p(y = 1 | x;✓)
p(y = 0 | x;✓) = ✓0 + ✓1x1 + . . .+ ✓dxd

x

Side Note:  the odds in favor of an event is the quantity  
p / (1 − p), where p is the probability of the event

E.g., If I toss a fair dice, what are the odds that I will have a 6?

odds of y = 1

Based on slide by Xiaoli Fern



Logistic Regression

• Assume a threshold and...
– Predict y = 1 if  

– Predict y = 0 if  
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h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

g(z) =
1

1 + e�z

h✓(x) � 0.5

h✓(x) < 0.5

y = 1 

y = 0 

✓

Based on slide by Andrew Ng

should be large negative
values for negative instances

h✓(x) = g (✓|x) should be large positive
values for positive instances

h✓(x) = g (✓|x)



Non-Linear Decision Boundary
• Can apply basis function expansion to 

features, same as with linear regression
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Logistic Regression
(continued)
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Last Time: Logistic Regression

• Given

where

• Model:
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h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

n⇣
x(1), y(1)

⌘
,
⇣
x(2), y(2)

⌘
, . . . ,

⇣
x(n), y(n)

⌘o

x(i) 2 Rd, y(i) 2 {0, 1}



Logistic Regression Objective Function
• Shouldn't use squared loss as in linear 

regression:

– Using the logistic regression model

results in a non-convex optimization
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J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

h✓(x) =
1

1 + e�✓Tx



Deriving the Cost Function via MLE
• Likelihood of data is given by:

• So, looking for the θ that maximizes the 
likelihood

• Can take the log without changing the 
solution: 
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l(✓) =
nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax
✓

l(✓) = argmax
✓

nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax
✓

log
nY

i=1

p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

✓MLE = argmax
✓

log
nY

i=1

p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

log p(y(i) | x(i);✓)



Deriving the Cost Function via MLE
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• Expand as follows:

• Substitute in model, and take negative to yield

✓MLE = argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i);✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i);✓)

⌘i

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

Logistic regression objective:

min
✓

J(✓)

✓MLE = argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i);✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i);✓)

⌘i



Intuition Behind the Objective

• Cost of a single instance:

• Can re-write objective function as
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J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

J(✓) =
nX

i=1

cost
⇣
h✓(x

(i)), y(i)
⌘



Intuition Behind the Objective
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

Aside:  Recall the plot of log(z)



Intuition Behind the Objective

If y = 1
• Cost = 0 if prediction is correct
• As

• Captures intuition that larger 
mistakes should get larger 
penalties
– e.g., predict                      , but y = 1
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

h✓(x) ! 0, cost ! 1

h✓(x) = 0

Based on example by Andrew Ng

If y = 1

10

cost

h✓(x) = 0



Intuition Behind the Objective
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

If y = 0

10

cost

If y = 1

If y = 0
• Cost = 0 if prediction is 

correct
• As

• Captures intuition that 
larger mistakes should get 
larger penalties

(1� h✓(x)) ! 0, cost ! 1

Based on example by Andrew Ng

h✓(x) = 0



Regularized Logistic Regression

• We can regularize logistic regression exactly as 
before:
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J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

Jregularized(✓) = J(✓) + �
dX

j=1

✓2j

= J(✓) + �k✓[1:d]k22



Gradient Descent for Logistic Regression
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• Initialize 
• Repeat until convergence

✓

✓j  ✓j � ↵
@

@✓j
J(✓) simultaneous update 

for j = 0 ... d

Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

+ �k✓[1:d]k22

Want min
✓

J(✓)

Use the natural logarithm (ln = loge) to cancel with the exp() in h✓(x) =
1

1 + e�✓Tx



✓0  ✓0 � ↵
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⌘

✓j  ✓j � ↵
nX
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⇣
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⇣
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Gradient Descent for Logistic Regression
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Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

+ �k✓[1:d]k22

Want min
✓

J(✓)

• Initialize 
• Repeat until convergence

✓
(simultaneous update for j = 0 ... d)
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"
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⌘
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#



✓0  ✓0 � ↵
nX

i=1

⇣
h✓
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� y(i)
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Gradient Descent for Logistic Regression

20

• Initialize 
• Repeat until convergence

✓
(simultaneous update for j = 0 ... d)

This looks IDENTICAL to linear regression!!!
• Ignoring the 1/n constant
• However, the form of the model is very different:

h✓(x) =
1

1 + e�✓Tx

✓j  ✓j � ↵

"
nX

i=1

⇣
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