

CSE 446 Machine Learning

Instructor: Byron Boots

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

What is Machine Learning?

"Machine learning is the next Internet" -Tony Tether, Director, DARPA

"Machine learning is the hot new thing" -John Hennessy, President, Stanford

"Machine learning is today's discontinuity" -Jerry Yang, CEO, Yahoo

"Machine learning is the new electricity" -Andrew Ng, Chief Scientist Baidu

What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E.

A well-defined learning task is given by <P, T, E>.

Traditional Programming

Machine Learning

Slide credit: Pedro Domingos

When Do We Use Machine Learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (NLP, vision)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful:

• There is no need to "learn" to calculate payroll

Based on slide by E. Alpaydin

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

$$00011(1112)$$

 02220223333
 3449445555
 42777388
 888594999

6

Slide credit: Geoffrey Hinton

Some more examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns:
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Image classification (this is a cat)
- Generating patterns:
 - Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates
 - Applying this steering angle will crash the car

Slide credit: Geoffrey Hinton

Samuel's Checkers-Player

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed." -Arthur Samuel (1959)

Defining the Learning Task

Improve on task T, with respect to performance metric P, based on experience E

T: Playing checkers

- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver.
- T: Categorize email messages as spam or legitimate.
- P: Percentage of email messages correctly classified.
- E: Database of emails, some with human-given labels

Types of Learning

Types of Learning

	from input <i>x</i> , output:
unsupervised	summary z
supervised	prediction y
reinforcement	action a to maximize reward r

Types of Learning

Reinforcement Learning

Unsupervised Learning

- Given x₁, x₂, ..., x_n (without labels)
- Output structure in the x's
 - E.g., clustering

Supervised Learning: Regression

- Given (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Learn a function f(x) to predict y given x

– y is real-valued == regression

Data from G. Witt. Journal of Statistics Education, Volume 21, Number 1 (2013)

Supervised Learning: Classification

- Given (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Learn a function f(x) to predict y given x

– y is categorical == classification

Supervised Learning: Classification

- Given (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Learn a function f(x) to predict y given x

– y is categorical == classification

Tumor Size

Supervised Learning: Classification

- Given (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Learn a function f(x) to predict y given x

– y is categorical == classification

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

Based on example by Andrew Ng

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states → actions that tells you what to do in a given state
- Examples:
 - Steering a car
 - Playing a game
 - Navigating an environment
 - Balancing a pole on your hand

Framing a Learning Problem

Designing a Learning System

- Choose the training experience
- Choose exactly what is to be learned
 - i.e. the *target function*
- Choose how to represent the target function (parameterized class of functions)
- Choose a learning algorithm to infer the target function from the experience

Training vs. Test Distribution

- We often assume that the training and test examples are independently drawn from the same overall distribution of data
 - We call this "i.i.d" which stands for "independent and identically distributed"

ML in a Nutshell

- Hundreds of thousands of machine learning algorithms
 - Thousands new every year
- Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

Various Function Representations

- Numerical functions
 - Linear regression
 - Neural networks
 - Support vector machines
- Symbolic functions
 - Decision trees
 - Rules in propositional logic
 - Rules in first-order predicate logic
- Instance-based functions
 - Nearest-neighbor
- Probabilistic Graphical Models
 - Naïve Bayes
 - Bayesian networks
 - Hidden-Markov Models (HMMs)
 - Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

Optimization

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming
- Etc.

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- etc.

ML in Practice

- Understand domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learn models
 - Interpret results
 - Consolidate and deploy discovered knowledge

Loop

Lessons Learned about Learning

- Learning can be viewed as using direct or indirect experience to approximate a selected target function.
- Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits a set of training data.
- Different learning methods assume different hypothesis spaces (representation languages) and/or employ different search techniques.

What We'll Cover in this Course

• Supervised learning

- Decision trees
- K-nearest neighbors
- Regression
- Gradient Descent
- Bias & Variance
- Support Vector Machines
- Ensemble Learning
- Bayesian learning & Inference
- Neural Networks

Unsupervised learning

- Clustering
- Feature Selection
- Dimensionality Reduction