Is the test error unbiased for these programs?

" S

#matrix X, and 1000-by-
mu = np.mean(X, axis=0)
=X - mu

idx = np.random.permutation(1000) -
TRAIN = idx[0:900] ¢

TEST = idx[900::] _ ",
o W

ytrain = y[TRAIN] (‘A

Xtrain = X[TRAIN,:] @0\('0“'

# Solve for argmin_w [[Xtrain*w - ytrain[[_2

w = np.linalg.solve( np.dot(Xtrain.T, Xtrain),
np.dot(Xtrain.T, ytrain) )

b = np.mean(ytrain)

ytest = y[TEST]

Xtest = X[TEST,:]

train_error = np.dot( np.dot(Xtrain, w)+b - ytrain,

s - ytrain )/len(TRAIN)
_error = np.dot( np.dot(Xtest, w)+b~g ytest,
np.dot(Xtest, w)+b - ytest))/len(TEST)

print('Train error = ',train_error)
print('Test error = ',test_error)
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# Given dataset of 1000-by-50 feature

# matrix X, and 1000-by-1 labels vector
idx = np.random.permutation(1000)

TRAIN = idx[0:900]

TEST = idx[900::]

ytrain = y[TRAIN]

Xtrain = X[TRAIN,:]

Xtrain_avg = np.mean(Xtrain, axis=0)
Xtrain = Xtrain - Xtrain_avg

# Solve for argmin_w [[Xtrain*w - ytrain|[_2

w = np.linalg.solve( np.dot(Xtrain.T, Xtrain),
np.dot(Xtrain.T, ytrain) )

b

np.mean(ytrain)

ytest y[TEST]

Xtest = X[TEST,:]

Xtest_avg = np.mean(Xtest, axis=0).

Xtest = Xtest - Xtest—awg—
><1{rc.l;~«—‘2“c7

train_error = np.dot( np.dot(Xtrain, w)+b - ytrain,
np.dot(Xtrain, w)+b - ytrain )/len(TRAIN)

test_error = np.dot( np.dot(Xtest, w)+b - ytest,
np.dot(Xtest, w)+b - ytest )/len(TEST)

n

print('Train error = ',train_error)
print('Test error = ',test_error)



¢

Is the test error unbiased for this program?

# Given dataset of 1000-by-50 feature

# matrix X, and 1000-by-1 labels vector
idx = np.random.permutation(1000)

TRAIN = idx[0:800]

VAL = idx[800:900]

TEST = 1idx[900::]

ytrain y[TRAIN]
Xtrain X[TRAIN,:]
yval = y[VAL]

Xval = X[VAL,:]

err = np.zeros(50)

for d in range(1,51):
w, b = fit(Xtrain[:,0:d], ytrain)
yval_hat = predict(w, b, Xval[:,0:d])

err[d-1] = np.mean((yval_hat-yval)**2)
d_best = np.argmin(err)+1
Xtot = np.concatenate((Xtrain, Xval), axis=0)
ytot = np.concatenate((ytrain, yval), axis=0)
w, b = fit(Xtot[:,0:d_best], ytot)
ytest = y[TEST]
Xtest = X[TEST,:]

ytot_hat = predict(w, b, Xtot[:,0:d_best])
tot_train_error = np.mean((ytot_hat-ytot)**2)
ytest_hat = predict(w, b, Xtest[:,0:d_best])
test_error = np.mean((ytest_hat-ytest)**2)

print('Train error =
print('Test error =

',train_error)
',test_error)
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def fit(Xin, Yin):
mu = np.mean(Xin, axis=0)
Xin = Xin - mu
w = np.linalg.solve( np.dot(Xin.T, Xin),
np.dot(Xin.T, Yin) )
b = np.mean(Yin) - np.dot(w, mu)
return w, b

def predict(w, b, Xin):
return np.dot(Xin, w)+b



Cross-Validation




> How do we pick the regularization constant A...
> How do we pick the number of basis functions...

> We could use the test data, but...



How... How... How??????7?

> How do we pick the regularization constant A...
> How do we pick the number of basis functions...

> We could use the test data, but...

= Never ever ever ever ever ever ever ever ever ever
ever ever ever ever ever ever ever ever ever ever ever
ever ever ever ever ever ever train on the test data



(LOQ) Leave-one-out cross validation

> Consider a validation set with 1 exarrvl\ple:
- D -training data p- 5(7:,‘41’7 ;;q
- D\j - training data with j th data point (x; ,y;) moved to

validation set D/s =109 - (x, 452, [Xw,‘jsu)-ﬂ(’(ﬂ>
> Learn classifier f,; with D\j dataset
) e

> Estimate true error as squared error on predicting y;:
- Unbiased estimate of error,,q(fy,)! o

> LOO cross validation: Average over all data points j:
- For each data point you leave out, learn a new classifier fp,

- Estimate error as:



(LOO) Leave-one-out cross validation

> Consider a validation set with 1 example:
- D -training data
- D\j - training data with j th data point (x; ,y;) moved to
validation set
Learn classifier fy,; with D\j dataset

Estimate true error as squared error on predicting y;:

- Unbiased estimate of error,, . (fp)!

> LOO cross validation: Average over all data points j:
- For each data point you leave out, learn a new classifier fp,

- Estimate error as:
n

1
error;,o0o = - Z(yg — fD\j(xj))Z

g=1



LOO cross validation is (almost) unbiased estimate!

> When computing LOOCYV error, we only use N-1 data points
- So it’s not estimate of true error of learning with N data points

- Usually pessimistic, though — learning with less data typically
gives worse answer

> LOO is almost unbiased! Use LOO error for model selection!!!
- E.g., picking A



Computational cost of LOO

> Suppose you have 100,000 data points

> You implemented a great version of your learning
algorithm

- Learns in only 1 second
> Computing LOO will take about 1 day!!!



Use k-fold cross validation

> Randomly divide training data into k equal parts
- Dy,...,Dy

> Foreachi
- Learn classifier fj,; using data point not in D;

- Estimate error of f,5; on validation set D;.

: > (W= fovoi(x)’

D
(CUj 7yj)€Di

errorp, =
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Use k-fold cross validation

Randomly divide training data into k equal parts
- Dy,...,Dy

For eachi
- Learn classifier fj,; using data point not in D;

- Estimate error of f,5; on validation set D;.
1
D, ] > (W= fovoi(x)’
¢ (mjvyj)EDi

k-fold cross validation error is average over data spilits:

errorp, =

1 F
erTork_ fold = z Z errorp,
=1

k-fold cross validation properties:
- Much faster to compute than LOO
- More (pessimistically) biased — using much less data, only n(k-1)/k
- Usually, k=10



Recap D

(— —
> Given a dataset, begin by splitting into

TRAIN TEST

> Model selection: Use k-fold cross-validation on TRAIN to
train predictor and choose magic parameters such as A

Cro

TRAIN TRAIN-2  VAL-2 TRAIN-2  [gX38
—
VAL-3 TRAIN-3 fs. &
=2

> Model assessment: Use TEST to assess the accuracy of
the model you output

= Never ever ever ever ever train or choose
parameters based on the test data



Example 1

> You wish to predict the stock price of zoom.us given
historical stock price data

> You use all daily stock price up to Jan 1, 2020 as
TRAIN and Jan 2, 2020 - April 13, 2020 as TEST

> What’s wrong with this procedure?
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Example 2

T[af"‘;"

/" ek

> Given 10,000-dimensional data and n examples, we
pick a subset of 50 dimensions that have the highest
correlation with labels in the training set:

[ > i1 i Yl
\/Z;’ — L]
l 1=1"1,7 '

ter picking our 50 features, we then use CV with
the training set to train ridge regression with
regularization A

> What’s wrong with this procedure?

D

50 indices j that have largest




Recap A

()
4 l— C\VJ oF ‘C A
> Learning is... >‘80 A (%xo)
- Collect some data «fq o S
> E.g., housing info and sale price 7) f

et °©
Randomly smy@%}et into TRAIN, VAL, and TEST  [ar® " "

(&) (
> E.g. 180%7 10%, and 10%, respectively (o] J be vortt
Choose model A (Aub
> E.g., linear with non-linear transformations H»w §0
/
Choose a loss function
> E.g., least squares with ridge regression penalty on TRAIN
Choose an optimization procedure

> E.g., set derivative to zero to obtain estimator, cross-
validation on VAL to pick num. features and amount of
regularization

Justifying the accuracy of the estimate

> E.g., report%




Simple Variable Selection
LASSO: Sparse Regression

UNIVERSITY of WASHINGTON



SparSity Wrs = arg minz (yi — szw)2
i=1

= Vector w is sparse, if many entries are zero



Spal‘Slty Wrs = arg minz (yi — szw)2
1=1
= Vector w is sparse, if many entries are zero

Efficiency: If size(w) = 100 Billion, each prediction is expensive:
= If w is sparse, prediction computation only depends on number of
non-zeros

d
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Sparsity

= Vector w is sparse, if many entries are zero

- Interpretability: What are the
relevant dimension to make a

prediction?

How do we find “best”
subset among all possible?

Lot size

Single Family

Year built

Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
# floors

Flooring types
Parking type
Parking amount
Cooling

Heating

Exterior materials
Roof type
Structure style

n
. : 2
Wrs = argmin E (yz — x?w)
i=1

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System



Finding best subset: Exhaustive

> Try all subsets of size 1, 2, 3, ... and one that
minimizes validation error

> Problem?



Finding best subset: Greedy

Forward stepwise:
Starting from simple model and iteratively add features most useful
to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as
important

L ots of other variants, too.



Finding best subset: Regularize

Ridge regression makes coefficients small

n

~ . 2

Wridge — aAI'g m,u%nz (yz — x;,rw) T )\||’UJH§
1=1




Finding

best subset: Regularize

Ridge regression makes coefficients small

n
~ . 2
Wridge — al'g mu%nz (yz — x;,rw) + )‘HwHS
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Thresholded Ridge Regression

n

—~ . 2

Wridge — Arg H}})HZ (yz - QS‘;F’U)) + )‘Hng
1=1

Why don’t we just set small ridge coefficients to 07
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Thresholded Ridge Regression

n

—~ . 2

Wridge — Arg H}})HZ (yz - QS‘;F’U)) + )‘Hng
1=1

Consider two related features (bathrooms, showers)




Thresholded Ridge Regression

n
—~ . 2
Wridge — Arg H}})HZ (yz - QS‘?’U)) + )‘Hng
1=1

What if we didn’t include showers? Weight on bathrooms increases!
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Can another regularizer perform selection automatically?



Recall Ridge Regression

= Ridge Regressmn objective:

Wridge = arg mmz — x?w)Q + Awlf3
1=1 A
1;+\\,,+=+» V-
—— N
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d 1/p .
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Ridge vs. Lasso Regression

= Ridge Regressmn objective: 5
wmdge — arg mlnz o x?w) T )‘Hw”g

(=] 4

2+§ +...+E Y e /

= Lasso objective:




Penalized Least Squares

Ridge : r(w) = |[wl}  Lasso: r(w) = |[u]]y
n l\ﬂj
W, = arg min Z (yz — :I??’LU) + )\T‘( )
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Penalized Least Squares

T ——

~ . T
arg min g (yi —z; w

)2 + Ar(w)

For any A > 0 for which w, achieves the minimum, there exists a v > 0 such tlﬁt
&

n
A : 2
W, = arg min E (yZ — :c;rw)
1=

(

L

subject to r(w) <
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Penalized Least Squares

Ridge : r(w) = [[w][z  Lasso : r(w) = ||lwl];
W, = arg min Z (yz — x?w)Q + )\r(w) ]
1=1

For any A\ > 0 for which w, achieves the minimum, there exists a v > 0 such that

n
~ . T \2 .
Kwr = argmin E (yi — 27 w) subJect
1 =1 )
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