
Regularization

Regularization in Linear Regression
> Last time we turned a small number of features (low complexity) into a

large number of features (high complexity) through non-linear feature
maps. What if start with many features (high complexity) and not enough
examples to learn?

> Overfitting (too complex of a model, too little data) usually leads to very
large parameter choices, e.g.: 
 
 
 
 
 
 
How do we prevent this these huge coefficient values?

> Regularization imposes a “complexity” penalty

= (XTX)�1XTywhen exists…. (XTX)�1

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

= argmin
w

(y �Xw)T (y �Xw)

Recall Least Squares:

I
a

Tis satisfies XTX I Xty

If LEnullspaceotXx the
notempty iff XT x Ith Xiyu
x'x is notinvertible

Regularization in Linear Regression
> Last time we turned a small number of features (low complexity) into a

large number of features (high complexity) through non-linear feature
maps. What if start with many features (high complexity) and not enough
examples to learn?

> Overfitting (too complex of a model, too little data) usually leads to very
large parameter choices, e.g.: 
 
 
 
 
 
 
How do we prevent this these huge coefficient values?

> Regularization imposes a “complexity” penalty

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

= argmin
w

(y �Xw)T (y �Xw)

= argmin
w

wT (XTX)w � 2yTXwIn general:

Recall Least Squares:

Regularization in Linear Regression
> Last time we turned a small number of features (low complexity) into a

large number of features (high complexity) through non-linear feature
maps. What if start with many features (high complexity) and not enough
examples to learn?

> Overfitting (too complex of a model, too little data) usually leads to very
large parameter choices, e.g.: 
 
 
 
 
 
 
How do we prevent this these huge coefficient values?

> Regularization imposes a “complexity” penalty
+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)(y1 � xT
1 w)

2 + (y2 � xT
2 w)

2 + · · ·+ (yn � xT
nw)

2 =
nX

i=1

(yi � xT
i w)

2

What if xi 2 Rd and d > n?

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

= argmin
w

(y �Xw)T (y �Xw)

In general: = argmin
w

wT (XTX)w � 2yTXw

Recall Least Squares:

IEEEast

Regularization in Linear Regression
> Last time we turned a small number of features (low complexity) into a

large number of features (high complexity) through non-linear feature
maps. What if start with many features (high complexity) and not enough
examples to learn?

> Overfitting (too complex of a model, too little data) usually leads to very
large parameter choices, e.g.: 
 
 
 
 
 
 
How do we prevent this these huge coefficient values?

> Regularization imposes a “complexity” penalty

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

When xi 2 Rd and d > n the objective function is flat in some directions:

Recall Least Squares:

x

Regularization in Linear Regression
> Last time we turned a small number of features (low complexity) into a

large number of features (high complexity) through non-linear feature
maps. What if start with many features (high complexity) and not enough
examples to learn?

> Overfitting (too complex of a model, too little data) usually leads to very
large parameter choices, e.g.: 
 
 
 
 
 
 
How do we prevent this these huge coefficient values?

> Regularization imposes a “complexity” penalty

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

When xi 2 Rd and d > n the objective function is flat in some directions:

Implies optimal solution is not unique and
unstable due to lack of curvature:
• small changes in training data result in large

changes in solution
• often the magnitudes of w are “very large”

Regularization imposes “simpler” solutions by a
“complexity” penalty

Recall Least Squares:

Ridge Regression

■ Old Least squares objective:

■ Ridge Regression objective:

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22
e

e

Minimizing the Ridge Regression Objective

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

aggin HY Wh Hulk

Pul I 2 Xt Y Xw t 2 w

2 XTY 2 Xix w t 2X w O

Xtxw hw XTy Iz z

w XTy

Shrinkage Properties

bwridge = (XTX+ �I)�1XTy

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

For X
O

Always true

Bias-Variance Properties

■ Assume: and
bwridge = (XTX+ �I)�1XTy

XTX = nI y = Xw + ✏ ✏ ⇠ N (0,�2I)

If x 2 Rd and Y ⇠ N (xTw,�2), what is EY |x,train[(Y � xT bwridge)2|X = x]?

Suppose

E

Bias-Variance Properties

■ Assume: and
bwridge = (XTX+ �I)�1XTy

XTX = nI y = Xw + ✏ ✏ ⇠ N (0,�2I)

If x 2 Rd and Y ⇠ N (xTw,�2), what is EY |x,train[(Y � xT bwridge)2|X = x]?

Learning ErrorIrreducible Error

EY |X,D[(Y � xT bwridge)
2|X = x]

= EY |X [(Y � EY |X [Y |X = x])2|X = x] + ED[(EY |X [Y |X = x]� xT bwridge)
2]

= EY |X [(Y � xTw)2|X = x] + ED[(x
Tw � xT bwridge)

2]

= �2 + (xTw � ED[x
T bwridge])

2 + ED[(ED[x
T bwridge]� xT bwridge)

2]

Bias-Variance Properties

■ Assume: and
bwridge = (XTX+ �I)�1XTy

XTX = nI y = Xw + ✏ ✏ ⇠ N (0,�2I)

If x 2 Rd and Y ⇠ N (xTw,�2), what is EY |x,train[(Y � xT bwridge)2|X = x]?

Bias-squared VarianceIrreduc. Error

EY |X,D[(Y � xT bwridge)
2|X = x]

= EY |X [(Y � EY |X [Y |X = x])2|X = x] + ED[(EY |X [Y |X = x]� xT bwridge)
2]

= EY |X [(Y � xTw)2|X = x] + ED[(x
Tw � xT bwridge)

2]

= �2 + (xTw � ED[x
T bwridge])

2 + ED[(ED[x
T bwridge]� xT bwridge)

2]

Bias-Variance Properties

■ Assume: and
bwridge = (XTX+ �I)�1XTy

XTX = nI y = Xw + ✏ ✏ ⇠ N (0,�2I)

If x 2 Rd and Y ⇠ N (xTw,�2), what is EY |x,train[(Y � xT bwridge)2|X = x]?

Bias-squared VarianceIrreduc. Error

EY |X,D[(Y � xT bwridge)
2|X = x]

= EY |X [(Y � EY |X [Y |X = x])2|X = x] + ED[(EY |X [Y |X = x]� xT bwridge)
2]

= EY |X [(Y � xTw)2|X = x] + ED[(x
Tw � xT bwridge)

2]

= �2 + (xTw � ED[x
T bwridge])

2 + ED[(ED[x
T bwridge]� xT bwridge)

2]

bwridge = (XTX+ �I)�1XT (Xw + ✏)

=
n

n+ �
w +

1

n+ �
XT ✏

f IR HR IR

main Eep tfGeDD Ee pl Hx El

Bias-Variance Properties

■ Assume: and
bwridge = (XTX+ �I)�1XTy

XTX = nI y = Xw + ✏ ✏ ⇠ N (0,�2I)

If x 2 Rd and Y ⇠ N (xTw,�2), what is EY |x,train[(Y � xT bwridge)2|X = x]?

= �2 +
�2

(n+ �)2
(wTx)2 +

d�2n

(n+ �)2
kxk22 (verify at home)

Bias-squared VarianceIrreduc. Error

EY |X,D[(Y � xT bwridge)
2|X = x]

= EY |X [(Y � EY |X [Y |X = x])2|X = x] + ED[(EY |X [Y |X = x]� xT bwridge)
2]

= EY |X [(Y � xTw)2|X = x] + ED[(x
Tw � xT bwridge)

2]

= �2 + (xTw � ED[x
T bwridge])

2 + ED[(ED[x
T bwridge]� xT bwridge)

2]

Steinsparadoxy
x an tp 7 HR Efx µ

F I x
w

fi ME I Hi D thin

th so Elli MYCELIA NY

Ridge Regression: Effect of Regularization

■ Solution is indexed by the regularization parameter λ
■ Larger λ

■ Smaller λ

■ As λ ! 0,

■ As λ !∞,

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

bwridge !

bwridge !

bias variance To

Ls

O

Ridge Regression: Effect of Regularization

TRAIN error:

TRUE error:

TEST error:

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;

1

|D|
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2bw(�)

D,ridge = argmin
w

1

|D|
X

(xi,yi)2D

(yi � xT
i w)

2 + �||w||22

1

|T |
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2

E[(Y �XT bw(�)
D,ridge)

2]

Lamar Y larger complexity

Ridge Regression: Effect of Regularization

D i.i.d.⇠ PXY

T i.i.d.⇠ PXY

Important: D \ T = ;Each line is i.i.d. draw of D or T

1

|D|
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2bw(�)

D,ridge = argmin
w

1

|D|
X

(xi,yi)2D

(yi � xT
i w)

2 + �||w||22

1

|T |
X

(xi,yi)2D

(yi � xT
i bw(�)

D,ridge)
2

E[(Y �XT bw(�)
D,ridge)

2]

1/� small λlarge λ

TRAIN error:

TRUE error:

TEST error:

Ridge Coefficient Path

> Typical approach: select λ using cross validation, up next

From  
Kevin Murphy
textbook

1/�

one
value of

X

t
d 8

i

O

W

What you need to know…

> Regularization
– Penalizes complex models towards preferred,

simpler models
> Ridge regression
– L2 penalized least-squares regression
– Regularization parameter trades off model

complexity with training error

Never regularize the offset

Cross-Validation

How… How… How???????

> How do we pick the regularization constant λ…
> How do we pick the number of basis functions…

> We could use the test data, but…

How… How… How???????

> How do we pick the regularization constant λ…
> How do we pick the number of basis functions…

> We could use the test data, but…

■ Never ever ever ever ever ever ever ever ever ever
ever ever ever ever ever ever ever ever ever ever ever
ever ever ever ever ever ever train on the test data

(LOO) Leave-one-out cross validation
> Consider a validation set with 1 example:

– D – training data
– D\j – training data with j th data point (xj ,yj) moved to

validation set
> Learn classifier fD\j with D\j dataset
> Estimate true error as squared error on predicting yj:

– Unbiased estimate of errortrue(fD\j)! 
 

> LOO cross validation: Average over all data points j:
– For each data point you leave out, learn a new classifier fD\j

– Estimate error as: Mmmmmn

(LOO) Leave-one-out cross validation

> Consider a validation set with 1 example:
– D – training data
– D\j – training data with j th data point (xj ,yj) moved to

validation set
> Learn classifier fD\j with D\j dataset
> Estimate true error as squared error on predicting yj:

– Unbiased estimate of errortrue(fD\j)! 
 

> LOO cross validation: Average over all data points j:
– For each data point you leave out, learn a new classifier fD\j

– Estimate error as:

errorLOO =
1

n

nX

j=1

(yj � fD\j(xj))
2

LOO cross validation is (almost) unbiased estimate!

> When computing LOOCV error, we only use N-1 data points
– So it’s not estimate of true error of learning with N data points
– Usually pessimistic, though – learning with less data typically

gives worse answer

> LOO is almost unbiased! Use LOO error for model selection!!!
– E.g., picking λ

Computational cost of LOO

> Suppose you have 100,000 data points
> You implemented a great version of your learning

algorithm
– Learns in only 1 second

> Computing LOO will take about 1 day!!!
–

 Use k-fold cross validation
> Randomly divide training data into k equal parts

– D1,…,Dk

> For each i
– Learn classifier fD\Di using data point not in Di

– Estimate error of fD\Di on validation set Di: 
 

> k-fold cross validation error is average over data splits: 
 

> k-fold cross validation properties:
– Much faster to compute than LOO
– More (pessimistically) biased – using much less data, only n(k-1)/k
– Usually, k = 10

errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2

 Use k-fold cross validation
> Randomly divide training data into k equal parts

– D1,…,Dk

> For each i
– Learn classifier fD\Di using data point not in Di

– Estimate error of fD\Di on validation set Di: 
 

> k-fold cross validation error is average over data splits: 
 

> k-fold cross validation properties:
– Much faster to compute than LOO
– More (pessimistically) biased – using much less data, only n(k-1)/k
– Usually, k = 10

errorDi =
1

|Di|
X

(xj ,yj)2Di

(yj � fD\Di
(xj))

2

Recap

> Given a dataset, begin by splitting into  
 

> Model selection: Use k-fold cross-validation on TRAIN to
train predictor and choose magic parameters such as λ 
 
 
 
 
 

> Model assessment: Use TEST to assess the accuracy of
the model you output
■ Never ever ever ever ever train or choose

parameters based on the test data

TESTTRAIN

TRAIN

TRAIN-1 VAL-1

TRAIN-3VAL-3

TRAIN-2VAL-2TRAIN-2

Example 1
> You wish to predict the stock price of zoom.us given

historical stock price data
> You use all daily stock price up to Jan 1, 2020 as

TRAIN and Jan 2, 2020 - April 13, 2020 as TEST
> What’s wrong with this procedure?

Example 2
> Given 10,000-dimensional data and n examples, we

pick a subset of 50 dimensions that have the highest
correlation with labels in the training set: 
 
 

> After picking our 50 features, we then use CV with
the training set to train ridge regression with
regularization λ

> What’s wrong with this procedure?

50 indices j that have largest
|
Pn

i=1 xi,jyi|qPn
i=1 x

2
i,j

Recap
> Learning is…

– Collect some data
>E.g., housing info and sale price

– Randomly split dataset into TRAIN, VAL, and TEST
>E.g., 80%, 10%, and 10%, respectively

– Choose a hypothesis class or model
>E.g., linear with non-linear transformations

– Choose a loss function
>E.g., least squares with ridge regression penalty on TRAIN

– Choose an optimization procedure
>E.g., set derivative to zero to obtain estimator, cross-

validation on VAL to pick num. features and amount of
regularization

– Justifying the accuracy of the estimate
>E.g., report TEST error

Simple Variable Selection 
LASSO: Sparse Regression

Sparsity
■ Vector w is sparse, if many entries are zero

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

Sparsity
■ Vector w is sparse, if many entries are zero

– Efficiency: If size(w) = 100 Billion, each prediction is expensive:
■ If w is sparse, prediction computation only depends on number of

non-zeros

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

=
X

ŵj 6=0

ŷi = ŵj hj(xi)byi = bw>
LSxi =

dX

j=1

xi[j] bwLS [j]

Sparsity
■ Vector w is sparse, if many entries are zero

– Interpretability: What are the  
relevant dimension to make a  
prediction?

bwLS = argmin
w

nX

i=1

�
yi � xT

i w
�2

■ How do we find “best”
subset among all possible?

$?

Lot	size
Single	Family
Year built
Last	sold	price
Last	sale	price/sqft
Finished	sqft
Unfinished	sqft
Finished	basement	sqft
#	floors
Flooring	 types
Parking	type
Parking	amount
Cooling
Heating
Exterior	materials
Roof	type
Structure	style

Dishwasher
Garbage	disposal
Microwave
Range	/	Oven
Refrigerator
Washer
Dryer
Laundry location
Heating	type
Jetted	Tub
Deck
Fenced	Yard
Lawn
Garden
Sprinkler	System

Finding best subset: Exhaustive
> Try all subsets of size 1, 2, 3, … and one that

minimizes validation error
> Problem?

Finding best subset: Greedy
Forward stepwise:
Starting from simple model and iteratively add features most useful
to fit

Backward stepwise:
Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:
In forward algorithm, insert steps to remove features no longer as
important

Lots of other variants, too.

Finding best subset: Regularize
Ridge regression makes coefficients small

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

Finding best subset: Regularize
Ridge regression makes coefficients small

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

From  
Kevin Murphy
textbook

1/�

Thresholded Ridge Regression

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

0

Why don’t we just set small ridge coefficients to 0?

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

0

Consider two related features (bathrooms, showers)

Thresholded Ridge Regression

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

0

What if we didn’t include showers? Weight on bathrooms increases!

Thresholded Ridge Regression

Can another regularizer perform selection automatically?

Recall Ridge Regression

■ Ridge Regression objective: 
 
 
 
 
 
 

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

kwkp =

dX

i=1

|w|p
!1/p

Ridge vs. Lasso Regression

■ Ridge Regression objective: 
 
 
 
 
 
 

■ Lasso objective:

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwridge = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||22

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

�

bwlasso = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �||w||1

Penalized Least Squares

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

Penalized Least Squares

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

For any � � 0 for which bwr achieves the minimum, there exists a ⌫ � 0 such that

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

subject to r(w)  ⌫

Penalized Least Squares

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

+ �r(w)

Ridge : r(w) = ||w||22 Lasso : r(w) = ||w||1

For any � � 0 for which bwr achieves the minimum, there exists a ⌫ � 0 such that

bwr = argmin
w

nX

i=1

�
yi � xT

i w
�2

subject to r(w)  ⌫

