Regularization

Recall Least Squares:
$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

$$= \arg\min_{w} (\mathbf{y} - \mathbf{X}w)^T (\mathbf{y} - \mathbf{X}w)$$
when $(\mathbf{X}^T \mathbf{X})^{-1}$ exists.... $= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

$$\widehat{V}_{LS} \quad \text{satisfies} \qquad \underset{X}{X} \widehat{W} = \underset{Y}{X} Y$$

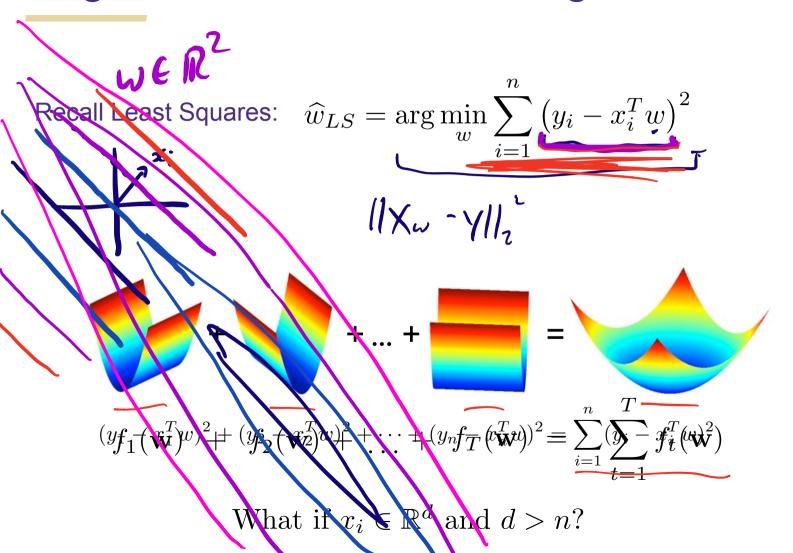
$$If \quad X \in \text{nullspace of } (X \widehat{X} X), \text{ the}$$

$$notenty \quad \text{iff} \qquad (X \widehat{X}) (\widehat{W} + X) = \underset{X}{X} \widehat{X} \widehat{W}$$

$$x^{X} \quad \text{is not invertible}$$

Recall Least Squares:
$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{\infty} (y_i - x_i^T w)^2$$

$$= \arg\min_{w} (\mathbf{y} - \mathbf{X}w)^T (\mathbf{y} - \mathbf{X}w)$$
In general: $= \arg\min_{w} w^T (\mathbf{X}^T \mathbf{X}) w - 2y^T \mathbf{X}w$



Recall Least Squares:
$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{N} (y_i - x_i^T w)^2$$

When $x_i \in \mathbb{R}^d$ and d > n the objective function is flat in some directions:

$$f_1(\mathbf{w}) +$$

Recall Least Squares:
$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{N} (y_i - x_i^T w)^2$$

When $x_i \in \mathbb{R}^d$ and d > n the objective function is flat in some directions:

Implies optimal solution is not unique and unstable due to lack of curvature:

- small changes in training data result in large changes in solution
- often the magnitudes of w are "very large"

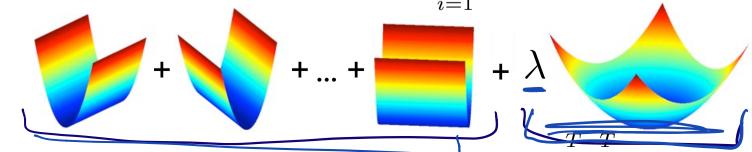
 $f_1(\mathbf{w}) +$ Regularization imposes "simpler" solutions by a "complexity" penalty

Ridge Regression

Old Least squares objective:

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{m} \left(y_i - x_i^T w \right)^2$$

- Ridge Regression objective: $f_T(\mathbf{w}) + f_2(\mathbf{w}) + f_2(\mathbf{w})$



Minimizing the Ridge Regression Objective

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_{i} - x_{i}^{T}w)^{2} + \lambda ||w||_{2}^{2}$$

$$= \sup_{w} ||Y - x_{v}||_{2}^{2} + \lambda ||\omega||_{2}^{2}$$

$$\nabla_{v}(\cdot) = -2 \times^{T} (Y - x_{w}) + 2\lambda w$$

$$= -2 \times^{T} Y + 2 \times^{T} x_{w} + 2\lambda w = 0$$

$$\times^{T} x_{w} + \lambda w = x^{T} Y$$

$$= (x^{T} x + \lambda I)_{w} = x^{T} y \Rightarrow$$

Shrinkage Properties

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

$$= (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$$

$$\mathcal{U}_{wys} \quad \text{free}$$

$$\widehat{\mathbf{w}}_{ridge} = (\mathbf{X}^T\mathbf{X} + \lambda I)^{-1}\mathbf{X}^T\mathbf{y}$$
 Assume: $\mathbf{X}^T\mathbf{X} = nI$ and $\mathbf{y} = \mathbf{X}w + \boldsymbol{\epsilon}$ $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2I)$

$$\widehat{w}_{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$$

• Assume: $\mathbf{X}^T\mathbf{X} = nI$ and $\mathbf{y} = \mathbf{X}w + \boldsymbol{\epsilon}$ $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2 I)$

If
$$x \in \mathbb{R}^d$$
 and $Y \sim \mathcal{N}(x^T w, \sigma^2)$, what is $\mathbb{E}_{Y|x, \text{train}}[(Y - x^T \widehat{w}_{ridge})^2 | X = x]$?

$$\begin{split} \mathbb{E}_{Y|X,\mathcal{D}}[(Y-x^T\widehat{w}_{ridge})^2|X=x] \\ &= \underbrace{\mathbb{E}_{Y|X}[(Y-\mathbb{E}_{Y|X}[Y|X=x])^2|X=x]}_{\text{Irreducible Error}} + \underbrace{\mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{Y|X}[Y|X=x]-x^T\widehat{w}_{ridge})^2]}_{\text{Learning Error}} \end{split}$$

$$\widehat{w}_{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$$

• Assume: $\mathbf{X}^T\mathbf{X} = nI$ and $\mathbf{y} = \mathbf{X}w + \boldsymbol{\epsilon}$ $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2 I)$

$$\begin{split} \mathbb{E}_{Y|X,\mathcal{D}}[(Y-x^T\widehat{w}_{ridge})^2|X=x] \\ &= \mathbb{E}_{Y|X}[(Y-\mathbb{E}_{Y|X}[Y|X=x])^2|X=x] + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{Y|X}[Y|X=x]-x^T\widehat{w}_{ridge})^2] \\ &= \mathbb{E}_{Y|X}[(Y-x^Tw)^2|X=x] + \mathbb{E}_{\mathcal{D}}[(x^Tw-x^T\widehat{w}_{ridge})^2] \\ &= \underline{\sigma}^2 + \underbrace{(x^Tw-\mathbb{E}_{\mathcal{D}}[x^T\widehat{w}_{ridge}])^2 + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[x^T\widehat{w}_{ridge}]-x^T\widehat{w}_{ridge})^2]}_{\text{Irreduc. Error}} \end{split}$$
 Irreduc. Error

F: R XR -AR

Bias-Variance Properties

$$\min_{x} \mathbb{E}_{\mathcal{E} \sim \mathcal{P}}[f(x, \mathcal{E})] \geq \mathbb{E}_{\mathcal{E} \sim \mathcal{P}}[\min_{x} f(x, \mathcal{E})]$$

$$\widehat{w}_{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$$

- Assume: $\mathbf{X}^T\mathbf{X} = nI$ and $\mathbf{y} = \mathbf{X}w + \boldsymbol{\epsilon}$ $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2 I)$

$$\begin{split} \mathbb{E}_{Y|X,\mathcal{D}}[(Y-x^T\widehat{w}_{ridge})^2|X &= x] \\ &= \mathbb{E}_{Y|X}[(Y-\mathbb{E}_{Y|X}[Y|X=x])^2|X = x] + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{Y|X}[Y|X=x]-x^T\widehat{w}_{ridge})^2] \\ &= \mathbb{E}_{Y|X}[(Y-x^Tw)^2|X=x] + \mathbb{E}_{\mathcal{D}}[(x^Tw-x^T\widehat{w}_{ridge})^2] \\ &= \underline{\sigma^2} + \underbrace{(x^Tw-\mathbb{E}_{\mathcal{D}}[x^T\widehat{w}_{ridge}])^2 + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[x^T\widehat{w}_{ridge}]-x^T\widehat{w}_{ridge})^2]}_{\text{Urreduc. Error}} \quad \end{split}$$

$$\begin{aligned} & \text{Irreduc. Error} \quad & \text{Bias-squared} \quad & \text{Variance} \end{aligned}$$

$$\widehat{w}_{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T (\mathbf{X} w + \boldsymbol{\epsilon})$$

$$\longrightarrow \frac{n}{n+\lambda} w + \frac{1}{n+\lambda} \mathbf{X}^T \boldsymbol{\epsilon} \longleftarrow$$

$$\widehat{w}_{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda I)^{-1} \mathbf{X}^T \mathbf{y}$$

- Assume: $\mathbf{X}^T\mathbf{X}=nI$ and $\mathbf{y}=\mathbf{X}w+oldsymbol{\epsilon}$ $oldsymbol{\epsilon}\sim\mathcal{N}(0,\sigma^2I)$

$$\begin{split} \mathbb{E}_{Y|X,\mathcal{D}}[(Y-x^T\widehat{w}_{ridge})^2|X=x] \\ &= \mathbb{E}_{Y|X}[(Y-\mathbb{E}_{Y|X}[Y|X=x])^2|X=x] + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{Y|X}[Y|X=x]-x^T\widehat{w}_{ridge})^2] \\ &= \mathbb{E}_{Y|X}[(Y-x^Tw)^2|X=x] + \mathbb{E}_{\mathcal{D}}[(x^Tw-x^T\widehat{w}_{ridge})^2] \\ &= \sigma^2 + (x^Tw-\mathbb{E}_{\mathcal{D}}[x^T\widehat{w}_{ridge}])^2 + \mathbb{E}_{\mathcal{D}}[(\mathbb{E}_{\mathcal{D}}[x^T\widehat{w}_{ridge}]-x^T\widehat{w}_{ridge})^2] \\ &= \sigma^2 + \frac{\lambda^2}{(n+\lambda)^2}(w^Tx)^2 + \frac{d\sigma^2n}{(n+\lambda)^2}\|x\|_2^2 \\ &= \overline{(x^2)^3} + \overline{(x^2)^3}$$

$$\hat{\mu} = \frac{1}{2} \sum_{i=1}^{n} \alpha_{i}$$

$$\mu^{(\lambda)} = \omega_{jmin} \sum_{i=1}^{n} (x_i - y)^2 + \lambda |y|^2$$

$$\frac{1}{3} \times 0$$
: $\mathbb{E}\left[\left(\hat{\mu}^{(\lambda)} - \mu\right)^2\right] < \mathbb{E}\left[\left(\hat{\mu} - \mu\right)^2\right]$

Ridge Regression: Effect of Regularizatio

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

- Solution is indexed by the regularization parameter λ
- Larger λ bins > vacinnee
- Smaller λ
- As $\lambda o 0$, $\widehat{w}_{ridge} o \widehat{w}_{ls}$
- As $\lambda o \infty$, $\widehat{w}_{ridge} o$ 0

Ridge Regression: Effect of Regularization

$$\mathcal{D} \stackrel{i.i.d.}{\sim} P_{XY}$$

$$\widehat{w}_{\mathcal{D},ridge}^{(\lambda)} = \arg\min_{w} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T w)^2 + \lambda ||w||_2^2 \qquad \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T \widehat{w}_{\mathcal{D},ridge}^{(\lambda)})^2$$

TRAIN error:

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T \widehat{w}_{\mathcal{D}, ridge}^{(\lambda)})^2$$

TRUE error:

$$\mathbb{E}[(Y - X^T \widehat{w}_{\mathcal{D},ridge}^{(\lambda)})^2]$$

TEST error:

$$\mathcal{T} \overset{i.i.d.}{\sim} P_{XY}$$

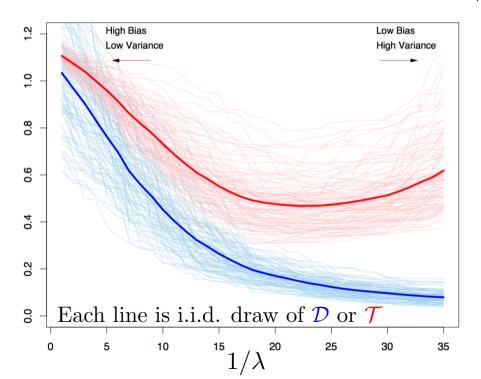
$$\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T \widehat{w}_{\mathcal{D}, ridge}^{(\lambda)})^2$$

Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

Ridge Regression: Effect of Regularization

$$\mathcal{D} \overset{i.i.d.}{\sim} P_{XY}$$

$$\widehat{w}_{\mathcal{D},ridge}^{(\lambda)} = \arg\min_{w} \frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$



TRAIN error:

$$\frac{1}{|\mathcal{D}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T \widehat{w}_{\mathcal{D}, ridge}^{(\lambda)})^2$$

TRUE error:

$$\mathbb{E}[(Y - X^T \widehat{w}_{\mathcal{D},ridge}^{(\lambda)})^2]$$

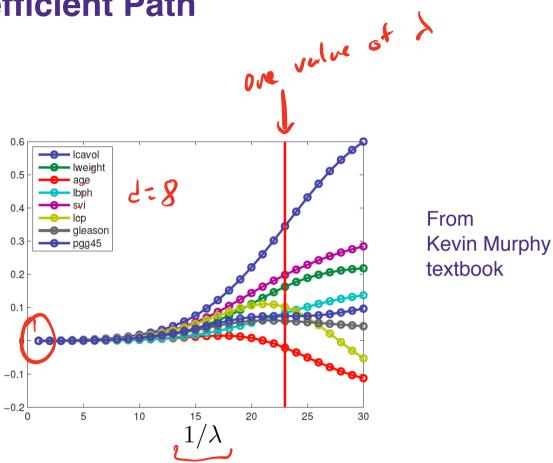
TEST error:

$$\mathcal{T} \overset{i.i.d.}{\sim} P_{XY}$$

$$\frac{1}{|\mathcal{T}|} \sum_{(x_i, y_i) \in \mathcal{D}} (y_i - x_i^T \widehat{w}_{\mathcal{D}, ridge}^{(\lambda)})^2$$

Important: $\mathcal{D} \cap \mathcal{T} = \emptyset$

Ridge Coefficient Path



> Typical approach: select λ using cross validation, up next

What you need to know...

- > Regularization
 - Penalizes complex models towards preferred, simpler models
- > Ridge regression
 - L₂ penalized least-squares regression
 - Regularization parameter trades off model complexity with training error
- > Never regularize the offset!

Cross-Validation

How... How... How???????

- > How do we pick the regularization constant λ...
- > How do we pick the number of basis functions...
- > We could use the test data, but...

How... How... How???????

- > How do we pick the regularization constant λ...
- > How do we pick the number of basis functions...
- > We could use the test data, but...

(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
 - D training data
 - D\j training data with j th data point (x_j,y_j) moved to validation set
- > Learn classifier $f_{D\setminus i}$ with $D\setminus j$ dataset
- > Estimate true error as squared error on predicting y_i:
 - Unbiased estimate of $error_{true}(f_{D\setminus i})!$

(LOO) Leave-one-out cross validation

- > Consider a validation set with 1 example:
 - D training data
 - D\j training data with j th data point (x_j,y_j) moved to validation set
- > Learn classifier $f_{D\setminus i}$ with $D\setminus j$ dataset
- > **Estimate true error** as squared error on predicting **y**_i:
 - Unbiased estimate of $error_{true}(f_{D\setminus i})!$

- > **LOO cross validation**: Average over all data points *j*:
 - For each data point you leave out, learn a new classifier $f_{D_{ij}}$
 - Estimate error as:

$$\operatorname{error}_{LOO} = \frac{1}{n} \sum_{j=1}^{n} (y_j - f_{\mathcal{D}\setminus j}(x_j))^2$$

LOO cross validation is (almost) unbiased estimate!

- > When computing LOOCV error, we only use *N-1* data points
 - So it's not estimate of true error of learning with N data points
 - Usually pessimistic, though learning with less data typically gives worse answer
- > LOO is almost unbiased! Use LOO error for model selection!!!
 - E.g., picking λ

Computational cost of LOO

- > Suppose you have 100,000 data points
- > You implemented a great version of your learning algorithm
 - Learns in only 1 second
- > Computing LOO will take about 1 day!!!

Use k-fold cross validation

- > Randomly divide training data into *k* equal parts
 - $D_1,...,D_k$

- > For each i
 - Learn classifier $f_{D \setminus Di}$ using data point not in D_i
 - Estimate error of $f_{D \setminus Di}$ on validation set D_i :

$$\operatorname{error}_{\mathcal{D}_i} = \frac{1}{|\mathcal{D}_i|} \sum_{(x_j, y_j) \in \mathcal{D}_i} (y_j - f_{\mathcal{D} \setminus \mathcal{D}_i}(x_j))^2$$

Use k-fold cross validation

- > Randomly divide training data into *k* equal parts
 - $D_1,...,D_k$

- Estimate error of $f_{D \setminus D_i}$ on validation set D_i :

$$\operatorname{error}_{\mathcal{D}_i} = \frac{1}{|\mathcal{D}_i|} \sum_{(x_i, y_i) \in \mathcal{D}_i} (y_j - f_{\mathcal{D} \setminus \mathcal{D}_i}(x_j))^2$$

> k-fold cross validation error is average over data splits:

$$error_{k-fold} = \frac{1}{k} \sum_{i=1}^{k} error_{\mathcal{D}_i}$$

5

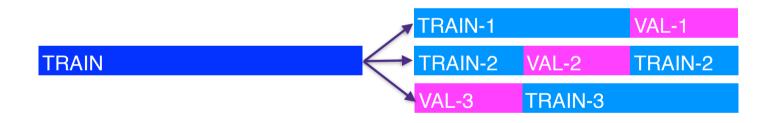
Train

- > k-fold cross validation properties:
 - Much faster to compute than LOO
 - More (pessimistically) biased using much less data, only n(k-1)/k
 - Usually, k = 10

Recap

> Given a dataset, begin by splitting into

> Model selection: Use k-fold cross-validation on TRAIN to train predictor and choose magic parameters such as λ



- Model assessment: Use TEST to assess the accuracy of the model you output
 - Never ever ever ever train or choose parameters based on the test data

Example 1

- > You wish to predict the stock price of <u>zoom.us</u> given historical stock price data
- > You use all daily stock price up to Jan 1, 2020 as TRAIN and Jan 2, 2020 April 13, 2020 as TEST
- > What's wrong with this procedure?

Example 2

> Given 10,000-dimensional data and n examples, we pick a subset of 50 dimensions that have the highest correlation with labels in the training set:

50 indices j that have largest
$$\frac{|\sum_{i=1}^{n} x_{i,j} y_i|}{\sqrt{\sum_{i=1}^{n} x_{i,j}^2}}$$

- > After picking our 50 features, we then use CV with the training set to train ridge regression with regularization λ
- > What's wrong with this procedure?

Recap

- > Learning is...
 - Collect some data
 - > E.g., housing info and sale price
 - Randomly split dataset into TRAIN, VAL, and TEST
 - > E.g., 80%, 10%, and 10%, respectively
 - Choose a hypothesis class or model
 - > E.g., linear with non-linear transformations
 - Choose a loss function
 - > E.g., least squares with ridge regression penalty on TRAIN
 - Choose an optimization procedure
 - > E.g., set derivative to zero to obtain estimator, crossvalidation on VAL to pick num. features and amount of regularization
 - Justifying the accuracy of the estimate
 - > E.g., report TEST error

Simple Variable Selection LASSO: Sparse Regression

Sparsity

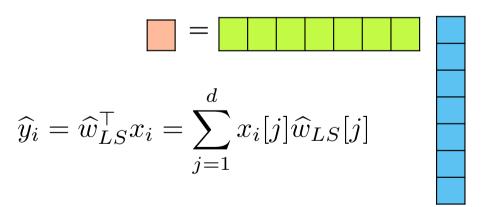
$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

Vector w is sparse, if many entries are zero

Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - **Efficiency**: If size(**w**) = 100 Billion, each prediction is expensive:
 - If w is sparse, prediction computation only depends on number of non-zeros



Sparsity

$$\widehat{w}_{LS} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$

- Vector w is sparse, if many entries are zero
 - Interpretability: What are the relevant dimension to make a prediction?

How do we find "best" subset among all possible? Lot size
Single Family
Year built
Last sold price
Last sale price/sqft
Finished sqft
Unfinished sqft
Finished basement sqft
floors
Flooring types
Parking type
Parking amount
Cooling
Heating

Exterior materials

Roof type Structure style Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer
Dryer
Laundry location
Heating type
Jetted Tub
Deck
Fenced Yard
Lawn
Garden
Sprinkler System

Finding best subset: Exhaustive

- > Try all subsets of size 1, 2, 3, ... and one that minimizes validation error
- > Problem?

Finding best subset: Greedy

Forward stepwise:

Starting from simple model and iteratively add features most useful to fit

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps:

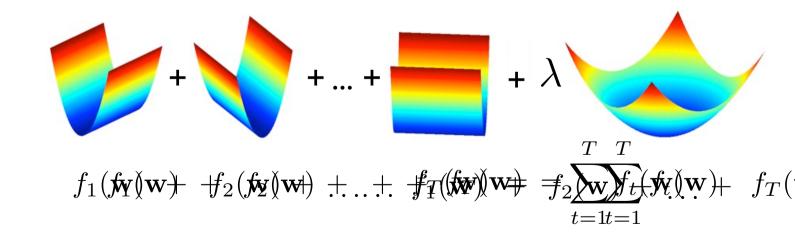
In forward algorithm, insert steps to remove features no longer as important

Lots of other variants, too.

Finding best subset: Regularize

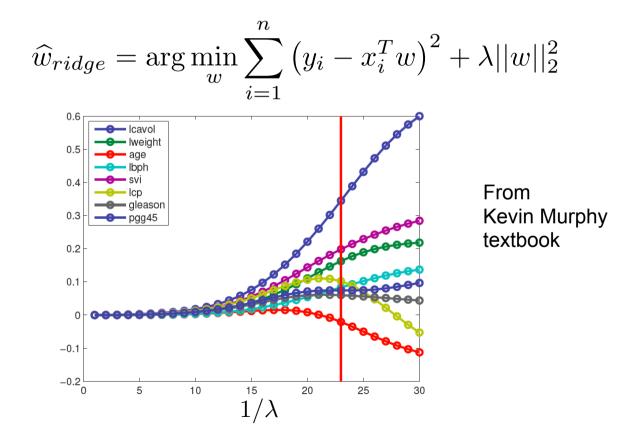
Ridge regression makes coefficients small

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$



Finding best subset: Regularize

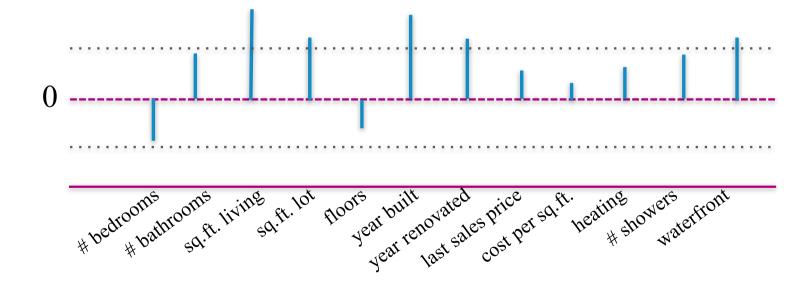
Ridge regression makes coefficients small



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

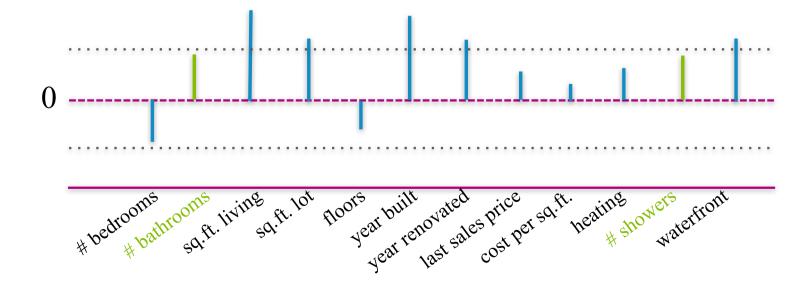
Why don't we just set **small** ridge coefficients to 0?



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

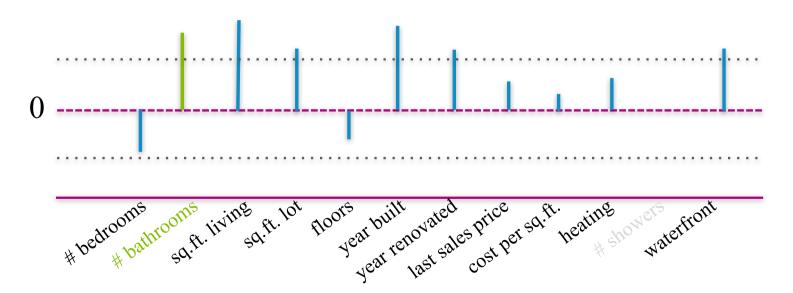
Consider two related features (bathrooms, showers)



Thresholded Ridge Regression

$$\widehat{w}_{ridge} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda ||w||_2^2$$

What if we didn't include showers? Weight on bathrooms increases!



Can another regularizer perform selection automatically?

Recall Ridge Regression

Ridge Regression objective: $\widehat{w}_{ridge} = \arg\min_{w} \sum (y_i - x_i^T w)^2 + \lambda ||w||_2^2$ $f_1(\mathbf{f}_{\mathbf{Y}})\mathbf{w} + f_2(\mathbf{f}_{\mathbf{Y}})\mathbf{w} + \dots + f_T(\mathbf{f}_{\mathbf{Y}})\mathbf{w} + f_2(\mathbf{f}_{\mathbf{Y}})\mathbf{w} + f_T(\mathbf{f}_{\mathbf{Y}})\mathbf{w} + f_T(\mathbf{f}_{\mathbf{Y}})$ t = 1t = 1 $||w||_p = \left(\sum_{i=1}^d |w|^p\right)^{1/p}$

Ridge vs. Lasso Regression

Ridge Regression objective: $\widehat{w}_{ridge} = \arg\min_{w} \sum (y_i - x_i^T w)^2 + \lambda ||w||_2^2$ $\begin{array}{c} \text{Lasso} = \arg\min_{w} \sum_{i=1}^{m} (y_i - tx_i) w + \lambda ||w||_1 \end{array}$

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$$

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2 + \lambda r(w)$$

For any $\lambda \geq 0$ for which \widehat{w}_r achieves the minimum, there exists a $\nu \geq 0$ such that

$$\widehat{w}_r = \arg\min_{w} \sum_{i} (y_i - x_i^T w)^2$$
 subject to $r(w) \le \nu$

Penalized Least Squares

Ridge:
$$r(w) = ||w||_2^2$$
 Lasso: $r(w) = ||w||_1$

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^n (y_i - x_i^T w)^2 + \lambda r(w)$$

For any $\lambda \geq 0$ for which \widehat{w}_r achieves the minimum, there exists a $\nu \geq 0$ such that

$$\widehat{w}_r = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i^T w)^2$$
 subject to $r(w) \le \nu$

