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Bias-Variance Tradeoff

 



EXY [(Y � ⌘(X))2]

Find function ⌘ that minimizes

= EX

h
EY |X [(Y � ⌘(x))2|X = x]

i

Optimal Prediction

Goal: Predict Y 2 Rd given X 2 Rd if (X,Y ) ⇠ PXY

(Hint: for any x, ⌘(x) = cx where cx minimizes EY |X [(Y � cx)2|X = x])
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Squared Error Optimal Predictor: ⌘(x) = EY |X [Y |X = x]
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Ideally, we want to find:

EXY [(Y � ⌘(X))2]

⌘(x) = EY |X [Y |X = x]
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Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

⌘(x) = EY |X [Y |X = x]
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Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

We care about future predictions: EXY [(Y � bf(X))2]

⌘(x) = EY |X [Y |X = x]
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Statistical Learning
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Each draw D = {(xi, yi)}ni=1 results in di↵erent bf

ED[ bf(x)]
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Ideally, we want to find:

(xi, yi)
i.i.d.⇠ PXY for i = 1, . . . , n

But we only have samples:

and are restricted to a
function class (e.g., linear)
so we compute:

⌘(x) = EY |X [Y |X = x]
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Bias-Variance Tradeoff

bf = argmin
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EY |X [ED[(Y � bfD(x))2]
��X = x] = EY |X [ED[(Y � ⌘(x) + ⌘(x)� bfD(x))2]

��X = x]



Bias-Variance Tradeoff

irreducible error 
Caused by stochastic  
label noise

learning error 
Caused by either using too 
“simple” of a model or not 
enough data to learn the model 
accurately
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Bias-Variance Tradeoff

ED[(⌘(x)� bfD(x))2] = ED[(⌘(x)� ED[ bfD(x)] + ED[ bfD(x)]� bfD(x))2]
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Bias-Variance Tradeoff

=(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]

=ED[(⌘(x)� ED[ bfD(x)])2 + 2(⌘(x)� ED[ bfD(x)])(ED[ bfD(x)]� bfD(x))

+ (ED[ bfD(x)]� bfD(x))2]

ED[(⌘(x)� bfD(x))2] = ED[(⌘(x)� ED[ bfD(x)] + ED[ bfD(x)]� bfD(x))2]

biased squared variance
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Bias-Variance Tradeoff

biased squared variance

+(⌘(x)� ED[ bfD(x)])2 + ED[(ED[ bfD(x)]� bfD(x))2]

irreducible error

EY |X [ED[(Y � bfD(x))2]
��X = x] = EY |X [(Y � ⌘(x))2

��X = x]
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> Choice of hypothesis class introduces learning bias
– More complex class → less bias
– More complex class → more variance

> But in practice?? 

Bias-Variance Tradeoff



F1 ⇢ F2 ⇢ F3 ⇢ . . .

Complexity grows as k grows

bf (k)
D = arg min

f2Fk

1

|D|
X

(xi,yi)2D

(yi � f(xi))
2

> Choice of hypothesis class introduces learning bias
– More complex class → less bias
– More complex class → more variance

> But in practice?? 
> Before we saw how increasing the feature space can 

increase the complexity of the learned estimator:

Bias-Variance Tradeoff
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F1 ⇢ F2 ⇢ F3 ⇢ . . .

TRAIN error: 

TRUE error: 
EXY [(Y � bf (k)
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D i.i.d.⇠ PXY

Training set error as a function of model complexity
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TEST error: 
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T i.i.d.⇠ PXY

Important: D \ T = ;

Training set error as a function of model complexity
TRAIN error: 
D i.i.d.⇠ PXY
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T i.i.d.⇠ PXY

Important: D \ T = ;Each line is i.i.d. draw of D or T

Plot from Hastie et al

TRUE error: 

TEST error: 

Training set error as a function of model complexity
TRAIN error: 
D i.i.d.⇠ PXY
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Training set error as a function of model complexity

F1 ⇢ F2 ⇢ F3 ⇢ . . .
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T i.i.d.⇠ PXY

Important: D \ T = ;

TRAIN error is optimistically 
biased because it is evaluated 
on the data it trained on. TEST 
error is unbiased only if T is 
never used to train the model 
or even pick the complexity k. 

TRUE error: 

TEST error: 

TRAIN error: 
D i.i.d.⇠ PXY
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Test set error

> Given a dataset, randomly split it into two parts: 
– Training data:
– Test data:

> Use training data to learn predictor  
■ e.g.,  
■ use training data to pick complexity k  

> Use test data to report predicted performance

D
T Important: D \ T = ;

1

|D|
X

(xi,yi)2D

(yi � bf (k)
D (xi))

2

1

|T |
X
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(yi � bf (k)
D (xi))

2
0



How many points do I use for training/testing?

> Very hard question to answer!
– Too few training points, learned model is bad
– Too few test points, you never know if you reached a good solution

> Bounds, such as Hoeffding’s inequality can help:

> More on this later the quarter, but still hard to answer
> Typically:

– If you have a reasonable amount of data 90/10 splits are common 
– If you have little data, then you need to get fancy (e.g., 

bootstrapping) 


