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Optimal Prediction

Goal: Predict Y € R? given X € R? if (X,Y) ~ Pxy
Find function n that minimizes
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(Hint: for any z, n(z) = ¢; where ¢, minimizes Ey|x[(Y — ¢;)?|X = z])
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We care about future predictions: Exy[(Y — f(X))?]
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Bias-Variance Tradeoff

n@) =Eyx[Y|X =a]  f- argg%r;%Dyz- - f(a))
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By x[Ep[(Y — fp(2))’]|X = 2] = By x[Ep[(Y — n(x) + n(z) — fp(x))*)|X = 2]
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W) =By [¥|X =a]  Foeepinl) (- f@)
Eyx[Ep[(Y — fo())?)|X = 2] = Ey x[Ep[(Y — n(z) + n(z) — fp(2))*]| X = 2]
—Em [EDKY n())” +2(Y — n(=))(n(z) - fp( )
+ (n(z) — fo(@)2)|X = 2]
—EY|x[(Y n(x))?|X = 2] + Ep[(n(z) — fp(x))’]
' irreducible error learning error
Caused by stochastic Caused by either using too
label noise “simple” of a model or not

enough data to learn the model
accurately
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|
=Ep((n(z) - Ep|fp()])* + 2(n(z) — Ep[fp()]) (Ep[fn(x)] — fp(x))
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Bias-Variance Tradeoff
7(x)

Ey|x[Ep[(Y — fp(a )| X = 2] = Eyx[(Y —n(2))*| X = ]

irreducible error

+(n(x) — Ep[fp(2)])* + Ep[(Ep|fp(x)] — fp(2))’]

biased squared variance
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Bias-Variance Tradeoff

> Choice of hypothesis class introduces learning bias
- More complex class — less bias
- More complex class & more variance

> But in practice??
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> Choice of hypothesis class introduces learning bias
- More complex class — less bias
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> Before we saw how increasing the feature space can
increase the complexity of the learned estimator:

F1 CFQCFBC...
A%EJj {eyr 3 ¢, - -

2(k) _ 1 BEPTRNY
b =argmin o D (v (i)
(x4,y;)ED

Complexity grows as k grows




Training set error as a function of model complexity
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Training set error as a function of model complexity
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Training set error as a function of model complexity
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TRAIN error is optimistically
biased because it is evaluated
on the data it trained on. TEST
error is unbiased only if T is
never used to train the model
or even pick the complexity k.
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Test set error

> Given a dataset, randomly split it into two parts:

- Training data: D

- Test data: T Important: DN7T =0

> Use training data to learn predictor
1
" 9. |p| ST i Y (@)?

(xi,y:)€D

= use training data to pick complexity k

> Use test data




How many points do | use for training/testing?

> Very hard question to answer!
- Too few training points, learned model is bad
- Too few test points, you never know if you reached a good solution

> Bounds, such as Hoeffding’s inequality can help:

P(|§—0"|>¢) < 2e 2N

> More on this later the quarter, but still hard to answer
> Typically:
- If you have a reasonable amount of data 90/10 splits are common

- If you have little data, then you need to get fancy (e.g.,
bootstrapping)



