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Optimal Prediction

Goal: Predict Y € R? given X € R? if (X,Y) ~ Pxy
Find function n that minimizes

Exy[(Y = n(X))*) = Ex |Ey x[(Y - n(2))?X = 2]

(Hint: for any z, n(x) = ¢, where ¢, minimizes Ey|x[(Y — ¢;)?| X = ])
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We care about future predictions: Exy [(Y — f(X))?]
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Bias-Variance Tradeoff

n(z) = By x[Y|X = 2] F=argmin= 3 (g — f(x:))?
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Evix[Ep[(Y — fo(2)?]|X = 1] = Byjx[Ep[(Y —n(z) + n(x) — fo(2)?]|X =]
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n(z) = IE‘fYIX[Y‘X = 1 J?— i ;rggg B zzl(yi = Pl
Eyx[Ep|(Y — fo(2)?]|X = 2] = Eyjx [Ep[(Y — n(z) +n(x) — fo(2))?]|X = ]

~Ey x [Epl(Y — n@))? + 2(Y — n(@)(n(x) - fp( )

+ (n(z) — Fol@))|X =2
=By x[(Y = n(2))*| X = a] + Ep|(n(z) - fo(x))’]

irreducible error learning error
Caused by stochastic Caused by either using too
label noise “simple” of a model or not

enough data to learn the model
accurately
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Ep((n(z) — fp(2))*] = Epl(n(z) — Ep[fp(2)] + Ep[fp(z)] - fo(z))’]
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biased squared variance
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Ey x[Ep[(Y — fp(2))?]|X = 2] = By x[(Y — n(z))?|X = 2]

irreducible error

+(n(x) — Ep[fp(2)))” + Ep|(Ep[fo(x)] — fo(x))?]

biased squared variance
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— total
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complexity
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> Choice of hypothesis class introduces learning bias
- More complex class — less bias
- More complex class = more variance

> But in practice??
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> Choice of hypothesis class introduces learning bias
More complex class — less bias
More complex class = more variance
> But in practice??
> Before we saw how increasing the feature space can
increase the complexity of the learned estimator:

F1 CFoCF3C...
, 1
J?ék)zarg;g%@ Z (i — f(i))?

(xzi,yi) €D

Complexity grows as k grows
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Training set error as a function of model complexity
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biased because it is evaluated
on the data it trained on. TEST
error is unbiased only if T is
never used to train the model
or even pick the complexity k.
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Test set error

> Given a dataset, randomly split it into two parts:

- Training data: D

- Test data: T~ Important: D N7 =0

> Use training data to learn predictor
1
reg, 2 - fp@)

(zi,y:)€ED
= use training data to pick complexity k

> Use test data to report predicted performance

1 k
i Sy — 9 (@)
(xi,y:)ET



How many points do | use for training/testing?

> Very hard question to answer!
- Too few training points, learned model is bad
- Too few test points, you never know if you reached a good solution

> Bounds, such as Hoeffding’s inequality can help:

P(|6—0"|>e) < 2e2N€

> More on this later the quarter, but still hard to answer
> Typically:
- If you have a reasonable amount of data 90/10 splits are common

- If you have little data, then you need to get fancy (e.g.,
bootstrapping)



