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Your first consulting job

• Billionaire: I have special coin, if I flip it, what’s the 
probability it will be heads? 

• You: Please flip it a few times: 

• You: The probability is: 

• Billionaire: Why?
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Coin – Binomial Distribution

P (D|✓) =

• Data: sequence D= (HHTHT…), k heads out of n flips
• Hypothesis: P(Heads) = θ,  P(Tails) = 1-θ

• Flips are i.i.d.:
• Independent events
• Identically distributed according to Binomial 

distribution
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• Data: sequence D= (HHTHT…), k heads out of n flips
• Hypothesis: P(Heads) = θ,  P(Tails) = 1-θ 
 

• Maximum likelihood estimation (MLE): Choose θ that 
maximizes the probability of observed data:

Maximum Likelihood Estimation

P (D|✓) = ✓k(1� ✓)n�k

b✓MLE = argmax
✓

P (D|✓)

= argmax
✓

logP (D|✓)
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Your first learning algorithm

d

d✓
logP (D|✓) = 0

b✓MLE = argmax
✓

logP (D|✓)

= argmax
✓

log ✓k(1� ✓)n�k

• Set derivative to zero:
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How many flips do I need?

b✓MLE =
k

n

b✓MLE =

b✓MLE =

• You: flip the coin 5 times. Billionaire: I got 3 heads. 

• You: flip the coin 50 times. Billionaire: I got 20 heads. 

• Billionaire: Which one is right? Why?
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• For n flips and k heads the MLE is unbiased for true θ*: 

• Expectation describes how the estimator behaves on average.  
• The Variance is the expected squared deviation from the mean:  
 
 

• As a rule of thumb: 

• Exercise: compute the 

Quantifying Uncertainty

b✓MLE =
k

n
E[b✓MLE ] = ✓⇤

Variance(b✓MLE) := E
⇣

b✓MLE � E[b✓MLE ]
⌘2
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Variance(b✓MLE) ⇡ E[b✓MLE ]±
q
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Variance(b✓MLE) := E
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• For n flips and k heads the MLE is unbiased for true θ*: 

• Expectation describes how the estimator behaves on average.  
• The Variance is the expected squared deviation from the mean:  
 
 

• As a rule of thumb: 

• Exercise: compute the 

Quantifying Uncertainty

b✓MLE =
k

n
E[b✓MLE ] = ✓⇤

Variance(b✓MLE) := E
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b✓MLE � E[b✓MLE ]
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Variance(b✓MLE) ⇡ E[b✓MLE ]±
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• For n flips and k heads the MLE is unbiased for true θ*: 

• Expectation describes how the estimator behaves on average.  
• For any ε>0 can we bound                                                    ?  
 
 
 
 
 
 

• Exercise: Apply Markov’s inequality to obtain bound.  
(Hint: set                             )

Expectation versus High Probability

b✓MLE =
k

n
E[b✓MLE ] = ✓⇤

P(|b✓MLE � E[b✓MLE ]| � ✏)

P(X � t)  E[X]

t

Markov’s inequality
For any t > 0 and non-negative random variable X

X = |b✓MLE � ✓⇤|2



Maximum Likelihood Estimation

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Likelihood function Ln(✓) =
nY

i=1

f(Xi; ✓)

ln(✓) = log(Ln(✓)) =
nX

i=1

log(f(Xi; ✓))Log-Likelihood function

Maximum Likelihood Estimator (MLE) b✓MLE = argmax
✓

Ln(✓)

Each Xi is iid from f x o



What about continuous variables?

• Billionaire: What if I am measuring a continuous variable? 
• You: Let me tell you about Gaussians…
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Some properties of Gaussians

• affine transformation (multiplying by scalar and adding a 
constant) 
• X ~ N(µ,σ2) 
• Y = aX + b    ➔ Y ~ N(aµ+b,a2σ2) 

• Sum of Gaussians 
• X ~ N(µX,σ2

X) 

• Y ~ N(µY,σ2
Y) 

• Z = X+Y    ➔  Z ~ N(µX+µY, σ2
X+σ2

Y)



• Prob. of i.i.d. samples D={x1,…,xn} (e.g., temperature): 

• Log-likelihood of data: 

• What is                for                       ? Draw a picture!

MLE for Gaussian

P (D|µ,�) = P (x1, . . . , xn|µ,�)

=
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Your second learning algorithm: 
MLE for mean of a Gaussian

d

dµ
logP (D|µ,�) = d

dµ

"
�n log(�

p
2⇡)�

nX

i=1

(xi � µ)2

2�2

#• What’s MLE for mean?

I might o
c I I

iu.me III ki



MLE for variance

d

d�
logP (D|µ,�) = d

d�

"
�n log(�

p
2⇡)�

nX

i=1

(xi � µ)2

2�2
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• Again, set derivative to zero:
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Learning Gaussian parameters

bµMLE =
1

n

nX

i=1

xi

c�2
MLE =

1

n

nX

i=1

(xi � bµMLE)
2

E[c�2
MLE ] 6= �2

c�2
unbiased =

1

n� 1

nX

i=1

(xi � bµMLE)
2

• MLE: 

• MLE for the variance of a Gaussian is biased 

• Unbiased variance estimator:
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Maximum Likelihood Estimation

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Likelihood function Ln(✓) =
nY

i=1

f(Xi; ✓)

ln(✓) = log(Ln(✓)) =
nX

i=1

log(f(Xi; ✓))Log-Likelihood function

Maximum Likelihood Estimator (MLE) b✓MLE = argmax
✓

Ln(✓)
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Maximum Likelihood Estimation

Observe X1, X2, . . . , Xn drawn IID from f(x; ✓) for some “true” ✓ = ✓⇤

Likelihood function Ln(✓) =
nY

i=1

f(Xi; ✓)

ln(✓) = log(Ln(✓)) =
nX

i=1

log(f(Xi; ✓))Log-Likelihood function

Maximum Likelihood Estimator (MLE) b✓MLE = argmax
✓

Ln(✓)

Properties (under benign regularity conditions—smoothness, identifiability, etc.):

Asymptotically consistent and normal:
b✓MLE�✓⇤

bse ⇠ N (0, 1)

Asymptotic Optimality, minimum variance (see Cramer-Rao lower bound)
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Recap

• Learning is… 
• Collect some data 

• E.g., coin flips 
• Choose a hypothesis class or model 

• E.g., binomial 
• Choose a loss function 

• E.g., data likelihood 
• Choose an optimization procedure 

• E.g., set derivative to zero to obtain MLE 
• Justifying the accuracy of the estimate 

• E.g., Markov’s inequality
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