Maximum Likelihood
Estimation




Your first consulting job

* Billionaire: | have special coin, if | flip it, what's the
probability it will be heads?

* You: Please flip it a few times:

* You: The probability is:

* Billionaire: Why?



Coin — Binomial Distribution

- Data: sequence D= (HHTHT...), k heads out of n flips
- Hypothesis: P(Heads) = 0, P(Tails) =1-0
* Flips are i.i.d.:
 Independent events

- |Identically distributed according to Binomial
distribution

. P(D|9) =



Maximum Likelihood Estimation
- Data: sequence D= (HHTHT...), k heads out of n flips
- Hypothesis: P(Heads) = 0, P(Tails) =1-0

P(D|#) = 0%(1 — )" "

« Maximum likelihood estimation (MLE): Choose 6 that
maximizes the probability of observed data:
P(D|9)

é\MLE — argm@ax P(D‘@)

= argmax log P(D|6)

)

LE




Your first learning algorithm

é\MLE — arg m@ax 10g P(D|9)

— argmax log 6% (1 — 6)" "

» Set derivative to zero:

0

d

do

log P(D|A) =0




How many flips do | need?

k

Ovie = —
n

* You: flip the coin 5 times. Billionaire: | got 3 heads.
é\M LE —

* You: flip the coin 50 times. Billionaire: | got 20 heads.
‘/9\M LE —

* Billionaire: Which one is right? Why?



Quantifying Uncertainty

* For n flips and k heads the MLE is unbiased for true 0"

N ok o~ e
HMLE_E t[HMLE] — 0

- Expectation describes how the estimator behaves on average.
* The Variance is the expected squared deviation from the mean:

R R R 2
Variance(0ppp) := E [(QMLE — E[HMLE]) ]

 As a rule of thumb:

Variance(@\MLE) ~ E[@MLE] -+ \/Variance(@\MLE)

« Exercise: compute the Variance(é\MLE)



Expectation versus High Probability

« For n flips and k heads the MLE is unbiased for true 0"

N ok o~ e
HMLE_E t[HMLE] — 0

* Expectation describes how the estlmator behaves on average.
- For any £>0 can we bound ]P’(\HMLE — E[@MLEH >€)?

Markov’s inequality
For any ¢ > 0 and non-negative random variable X

px > 0 < B2

« Exercise: Apply Markov’s inequality to obtain bound.
(Hint: set X = |0, — 0%]?)



Maximum Likelihood Estimation

Observe X1, Xo,..., X, drawn IID from f(x;#) for some “true” 6 = 0,

n

Likelihood function L,(0) =[] f(X:;0)
=1

Log-Likelihood function [,(0) =log(L,(0)) = Zlog(f(Xi; 6))

1=1

Maximum Likelihood Estimator (MLE) é\MLE = arg max L, ()
0



What about continuous variables?

* Billionaire: What if | am measuring a continuous variable?
* You: Let me tell you about Gaussians...




Some properties of Gaussians

« affine transformation (multiplying by scalar and adding a
constant)

¢ X~ N(u,0?)
e Y=aX+b =2 Y~ N(autb,a20?)

* Sum of Gaussians
« X~ N(uy,0%)
* Y ~ N(uy,0%)
« Z=X+Y > Z~ N(uytuy, 02+02y)



MLE for Gaussian

. Prob. of i.i.d. samples D={x,,...,x_} (e.g., temperature):

P(D|\p,0) = P(x1,...,%n|,0)

( 1 )” D (e w?
— H é 202
o\ 2T

1=1

 Log-likelihood of data:

S

log P(D|p,0) = —nlog(ov?2 Z
1=1

 What is ¢/9\MLE for 0 = (,u,a )? Draw a picture!



Your second learning algorithm:
MLE for mean of a Gaussian

« What’s MLE for mean?
d d

N

(CUz'—M)Q
2 og P(Dlp, o) = = | —nlog(ov/2m) —
7, 108 P(Dlu,0) = 7o | —nlog(ov/2m) ; o=



MLE for variance

* Again, set derivative to zero:
d d

N

(2i — p)°
- log P(D|p,0) = - —nlog(ov2rm) — ; 52



Learning Gaussian parameters

» MLE: R ] —
UMLE = - z;ibz
1=

- 1

O_QMLE — E Z(xz — ,TJJ\MLE)2
1=1

n

 MLE for the variance of a Gaussian is biased

N

E[O’QMLE] 7& 0'2

 Unbiased variance estimator:

n
0~ unbiased — n— 1 (xz — ,UJMLE)

1—=1



Maximum Likelihood Estimation

Observe X1, Xo,..., X, drawn IID from f(x;#) for some “true” 6 = 0,

n

Likelihood function L,(0) =[] f(X:;0)
=1

Log-Likelihood function [,(0) =log(L,(0)) = Zlog(f(Xi; 6))

1=1

Maximum Likelihood Estimator (MLE) é\MLE = arg max L, ()
0



Maximum Likelihood Estimation

Observe X1, Xo,..., X, drawn IID from f(x;#) for some “true” 6 = 0,

n

Likelihood function L,(0) =[] f(X:;0)
=1

Log-Likelihood function [,(0) =log(L,(0)) = Zlog(f(Xi; 6))

1=1

Maximum Likelihood Estimator (MLE) 0,;, 5 = arg max L., (0)
0

Properties (under benign regularity conditions—smoothness, identifiability, etc.):
) : : . Ovrp—9.
Asymptotically consistent and normal: *MEE—= ~ N(0,1)

 Asymptotic Optimality, minimum variance (see Cramer-Rao lower bound)



Recap

* Learning is...
« Collect some data
* E.g., coin flips
« Choose a hypothesis class or model
* E.g., binomial
« Choose a loss function
 E.g., data likelihood

« Choose an optimization procedure
* E.g., set derivative to zero to obtain MLE

« Justifying the accuracy of the estimate
* E.g., Markov’s inequality



