Announcements

- Evaluations

- Concerns over grades

- Google form sent out after class (for feedback, and incomplete requests)
- Future Offerings Discussion

- Lecture

UNIVERSITY of WASHINGTON

: d
Regression Trees ~ e

(l
“ f(z) = Z cmI(z € Rpp).
=1 Build a binary tree, sQlitting along axes

Cm = ave(y;|z; € Ry,).

Regression Trees

M

f(@) =) eml(z € Rm).

m=1 Build a binary tree, splitting along axes

&, = ave(yﬂxi c Rm)- How do you split?

Ao ~dov?
[0¢ _ ,
('rr“f'?/ Ri(j,s) ={X|X; <s} and Ra(j,s) ={X|X, > s}.
X1 < t1= en we seek the splitting variable j and split point s that solve
. . o 2 . o 2
X2 <t Xi<ty r§11£1 [rrgnmERZ(j S)(yz c1)” + ngnwERZ(j S)(yz c2)”|
|7—‘ Xo <ty
Ri Rz Rs When do you stop?

Decision Trees

Start from empty decision tree

Split on next best attribute (feature)

— Use, for example, information gain to select attribute

— Spliton argmax IG(X;) = argmax H(Y) — H(Y | X;)
Recurse Z 7,
Prune

M
xi<n f(z) = Z cmI(z € Rp).
m=1

Decision Trees o \
/ <

(email) (spam)
/80/1 17\ /48/355\
remove<0.06 hp<0.405
Trees are easy to interpret: / / hp>0.405
. \ \
- You can explain how the (omaid) span) Gpam) [omail]
. /80/106 9/112 /26/33 0/22
classifier came to the \ \ X

george<0.15

COHC|USIOI’] |t d|d / ch!>(l\.<l / m‘uu.,v)() 15 / (u\l*;\{k)>2.9n7

(email) Cmaid) | spam| ‘) | spam
/eoms\ /{00/203\' 6/109 1 nd\ 7/227
Trees are hard to interpret: /<00, TN e o
- Tough to explain why the i D[] L
CIaSSiﬁer came to the /80/652\ 01209 36/123\ 16/81 18/109 o/
. . . hp<0.03 free<0.065
conclusion it did / hp >n / free >\

L) [l

/77/429\ 3229 /16/94\ 9/29 .
cAPMAX<10.5 business<0.14 Small changes in

CAPMAX>10.5 business>0.145 .
data can result in
720/23& (/57/13A)\ 14/89 ‘ M:;/‘sm’ huge difference in
e iv“<r(:"(‘l(:2i.vv>().l2 e (”lu>() 045 trees
o L) G £
/49/11 9172
our<1.2 j\
ur>1.2
\

371101 112

Decision Trees

M
f(@)=) cml(z € Rp).

* Trees
* have low bias, high variance

 deal with categorial variables
well

* intuitive, interpretable (maybe)
« good software exists

« Some theoretical guarantees

Random Forests

UNIVERSITY of WASHINGTON

Random Forest

gt
S) () - (B

Tree methods have low bias but high variance.

One way to reduce variance is to
construct a lot of “lightly correlated” FLoer

trees and average them:

“Bagging:” Bootstrap aggregating

P
Random Forest 1 ¢ i

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}.

To make a prediction at a new point z: \l/
- 5 & 'b
£(x) = % > =1 Ip(z).

Regression:

Classification. € class predicti the bth random-forest
tree = majority vote {Cy(z)} 5. ~sqrt(p)

Random Forest

Random forrest

Training Error: 0.000

Test Error: 0.238
Bayes Error: 0.210

3 nearest neighbor

i %
Training Error: 0.130 (o]

Test Error: 0.242
Bayes Error: 0.210

Random Forest
Given random variables Y7, Y5, ..., Yp with
E[Y;] = y, B[(Y; — 1)?] = 0%, E[(Y; — 9)(Y; —y)] = po®
2

O Variance of individual predictor
Assume bias =0

IOO' 2 Correlation between predictors

The Yi's are identically distributed but not independent

E[(% ZY —y)?] =

Random Forest

Given random variables Y7,Y5,...,Ys with
E[Y;] =y, E[(Y — y)*] = 0%, E[(Yi — y)(Y; — y)] = po”

2

O Variance of individual predictor
Assume bias =0

IOO' 2 Correlation between predictors

=p U... P

The Yi's are identically distributed but not independent

1 1 O creases P decrecr s
Z Yi—yrl= o (1= 5o ’ :
OJZ (w Creese
/ \ (o bis 1 o)
Goes to 0 as B — oo Error dominated

by correlation

Averaging weakly correlated models results in biggest gains

Random Forest

Test Error

0.040 0.045 0.050 0.055 0.060 0.065 0.070

The power of weakly correlated predictors:

Spam Data

Bagging
—— Random Forest
—— Gradient Boosting (5 Node)

1000 1500 2000 2500

Number of Trees

Bagging: Averaged trees trained
on bootstrapped datasets that
used all d variables

Random forest: Averaged trees
trained on bootstrapped datasets
that m<d random variables

Gradient boosting: ignore for now

Takeaway: reducing correlation
improves performance!

Random Forests

 Random Forests
 have low bias, low variance
 deal with categorial variables well
 not that intuitive or interpretable
« good software exists
« Some theoretical guarantees
 Can still overfit

e Extremely effective in practice

Boosting

UNIVERSITY of WASHINGTON

Boosting

» 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

Boosting

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to

{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

Boosting

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to

{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

« 2001 Friedman: “Practical for arbitrary losses”

Boosting

« 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”

« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost
« 2001 Friedman: “Practical for arbitrary losses”

« 2014 Tiangi Chen: “Scale it up!” XGBoost Kﬂﬁﬂ \e

« 2017 MSR: “We can go faster” LightGBM

Boosting and Additive
Models

Additive models

« Consider the first algorithm we used to get good
classification for MNIST. Given: {(zi,v:)}i-1 2, e R%,y; € {—1,1}

P

 Generate random functions: ¢, :R* R t=1,...,p

—

/._’_ n p
* Learn some weights: 4= argminZLoss <yi,zwt¢t(%))

 Classify new data: f(z) = sign (Z@ e >

Additive models

« Consider the first algorithm we used to get good
classification for MNIST. Given: {(zi,vi)}i-1 2, e R%,y; € {—1,1}

 Generate random functions: ¢, :R* R t=1,...,p

n p
* Learn some weights: & = argmin) Loss <yi,zwt¢t(%))
=1 t=1

 Classify new data: f(z) = sign (Z @m(w))

An interpretation:
Each ¢;(x) is a classification rule that we are assigning some weight w;

Additive models

Consider the first algorithm we used to get good
classification for MNIST. Given: {(zi,yi)}i-1 z; e RYy; € {—1,1}

Generate random functions: ¢,: R 5 R t=1,....p

n p
Learn some weights: & = are minZLOSS <yi,zwt¢t(%)>
) t=1

Classify new data: f(z) =sign (Zwtqﬁt)

An interpretation:
Each ¢;(x) is a classification rule that we are assigning some weight w;

B, 1, ¢ = argwéfl,l..l.l, ZLObb (yZ,Zwtqﬁt T)

is in general computationally hard

Forward Stagewise Additive models

l?_(iv,_fy) is a function with parameters v Examples: b(z,v) = ﬁ
Algoritfh; 10.2 Forward Stagewise Additive Modeling. b(2,7) = 11 1{z3 < 72}
1. Initialize fo(z) = 0. — —————

2. Form = 1 to M: L5, [nst lo55
(a) Compute
&
(B ¥m) = argrg}gZL(yi,f:—l_‘_(mi) + Bb(@i; 7))-

=1

(b) Set fm(z) = fm—1(z) + Bmb(z; ym)-
il

|dea: greedily add one function at a time

Forward Stagewise Additive models

b(z,7) is a function with parameters v Examples: b(z,v) = L T
' ’ 14+e 7=
Algorithm 10.2 Forward Stagewise Additive Modeling. b(:l] fy) =" 1{5133 < ’yg}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(BmsYm) = argrggl; L(yi, fm—1(z:) + Bb(zi; 7))

(b) Set fm () = fm—-1(2) + Bmb(; Ym).

|dea: greedily add one function at a time

AdaBoost: b(x,v): classifiers to {—1,1}

—_—

L(y, f(z)) = exp(~yf(z))

<

Forward Stagewise Additive models

b(z,7) is a function with parameters v Examples: b(z,v) = L T
' ’ 14+e 7=
Algorithm 10.2 Forward Stagewise Additive Modeling. b(:l] fy) =" 1{5133 < ’yg}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(BmsYm) = argrg’gl; L(yi, fm—1(z:) + Bb(zi; 7))

(b) Set fm () = fm—-1(2) + Bmb(; Ym).

|dea: greedily add one function at a time
Boosted Regression Trees: L(y, f(z)) = (y — f(z))?

b(z,~): regression trees

Forward Stagewise Additive models

b(x,y) is a function with parameters -y Examples: b(z,7) = ;T
l+e 7=
Algorithm 10.2 Forward Stagewise Additive Modeling. b(x’ f)/) =]_{3;3 < '72}

1. Initialize fo(z) = 0.
2. Form =1 to M:
(a) Compute
N
(BmyYm) = argr‘rgl,iilz L(yi, fm—1(z:) + Bb(zi;7))-

=1

(b) Set fim(z) = fim—1(x) + Brmb(x;Ym).

|dea: greedily add one function at a time
Boosted Regression Trees: L(y, f(z)) = (y — f(z))?

L(Yi, frm-1(z:) + Bb(zi;7)) = (Z‘/i; ,Zm—l(-’l?i) - @b(,%’Y))z
= (

— Qn - ,Bb[:l:i;’gz, Tim = Yi — fm—1(z:)

Efficient: No harder than learning regression trees!

Forward Stagewise Additive models

b(z,7) is a function with parameters v Examples: b(z,v) = 1]
' ’ 1+e 7T
Algorithm 10.2 Forward Stagewise Additive Modeling. b (ZIJ 7) — v 1 {5133 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute

N
(B, ¥m) = arg rgglz L(Ys, frm—1(x:) + Bb(xi;7)).

=1

(b) Set fim(z) = fim—1(x) + Brmb(x;Ym).

|dea: greedily add one function at a time
Boosted Regression Trees: L(y, f(x)) = ylog(f(z)) + (1 —y)log(1l — f(x))

b(x,~y): regression trees

Computationally hard to update

Gradient Boosting

Least squares, exponential loss easy. But what about cross entropy?

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(z) = argmin,, Zfil L(y;,7)-
2. Form =1 to M:

a) Fori=1,2,..., N compute

(a) pute |,

Tim = = [W]fﬁm—l '

(b) Fit a regression tree to the targets 7, giving terminal regions
Rim, j=1,2,...,Jm.

(c) For j =1,2,...,Jm compute

Vim = argmin L (Y, fm-1(:) +7) -
v IiER]'m

(d) Update fm(z) = fin—1(z) + 2;21 YimI(@ € Rjm).

3. Output f(z) = fu(z).

LS fit regression tree to n-dimensional gradient, take a step in that direction

Gradient Boosting

Least squares, exponential loss easy. But what about cross entropy?

Test Error

0.4

0.3

0.2

0.1

0.0

Stumps
10 Node

100 Node
Adaboost

200

Number of Terms

AdaBoost uses 0/1 loss,
all other trees are minimizing
binomial deviance

Additive models

« Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

Additive models

« Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

 Kind of like sparsity?

Additive models

« Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But can
also use trees! Boosting can scale.

 Kind of like sparsity?

« Gradient boosting generalization with good software
packages (e.g., XGBoost, LGBM). Effective on Kaggle

* Robust to overfitting and can be dealt with with
“shrinkage” and “sampling”

Additive models

%‘ Frangois Chollet & @fchollet - Apr 3, 2019 v

\:g What machine learning tools do Kaggle champions use? We ran a survey
among teams that ranked in the *top 5* of a competition since 2016.

Primary ML software tool used by top-5 teams on Kaggle
in each competition (n=120)

Keras

LightGBM
XGBoost

PyTorch

TensorFlow
(non-Keras)

Sci-kit Learn
Fastai
Caffe

0 10 20 30 40

. Deep . Classic

Bagging versus Boosting

» Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

« Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error

« Empirically, boosting appears to outperform bagging

