
Announcements

- Evaluations
- Concerns over grades
- Google form sent out after class (for feedback, and incomplete requests)
- Future Offerings Discussion
- Lecture

©2018 Kevin Jamieson

Trees

Regression Trees

Build a binary tree, splitting along axes
7 r

KE R
d

R
INDI

it

Build a binary tree, splitting along axes

How do you split?

When do you stop?

Regression Trees

towing

Decision Trees

• Start from empty decision tree
• Split on next best attribute (feature)

– Use, for example, information gain to select attribute
– Split on

• Recurse
• Prune

Decision Trees

Trees are easy to interpret:
- You can explain how the
classifier came to the
conclusion it did

Trees are hard to interpret:
- Tough to explain why the
classifier came to the
conclusion it did

Small changes in
data can result in
huge difference in
trees

• Trees

• have low bias, high variance
• deal with categorial variables

well

• intuitive, interpretable (maybe)

• good software exists

• Some theoretical guarantees

Decision Trees

©2018 Kevin Jamieson

Random Forests

Tree methods have low bias but high variance.

One way to reduce variance is to
construct a lot of “lightly correlated”
trees and average them:

“Bagging:” Bootstrap aggregating

Random Forest

Booksatanist's

41
predicting

m~p/3

m~sqrt(p)

Random Forest
X f IRP

F

3 nearest neighborRandom forrest

Random Forest

E[(1
B

BX

i=1

Yi � y)2] =

Given random variables Y1, Y2, . . . , YB with
E[Yi] = y, E[(Yi � y)2] = �2, E[(Yi � y)(Yj � y)] = ⇢�2

The Yi’s are identically distributed but not independent

Variance of individual predictor�2

Assume bias = 0
Correlation between predictors⇢�2

Random Forest

E[(1
B

BX

i=1

Yi � y)2] =

Given random variables Y1, Y2, . . . , YB with
E[Yi] = y, E[(Yi � y)2] = �2, E[(Yi � y)(Yj � y)] = ⇢�2

The Yi’s are identically distributed but not independent

=
1

B
�2 + (1� 1

B
)⇢�2

Variance of individual predictor�2

Assume bias = 0
Correlation between predictors⇢�2

Goes to 0 as B ! 1 Error dominated
by correlation

Averaging weakly correlated models results in biggest gains

Random Forest

m p then pel
m decreases p decreases

62 increase
forbias increase

Random Forest

The power of weakly correlated predictors:

Bagging: Averaged trees trained
on bootstrapped datasets that
used all d variables

Random forest: Averaged trees
trained on bootstrapped datasets
that m<d random variables

Gradient boosting: ignore for now

Takeaway: reducing correlation
improves performance!

i

Random Forests

• Random Forests

• have low bias, low variance
• deal with categorial variables well

• not that intuitive or interpretable

• good software exists

• Some theoretical guarantees

• Can still overfit

• Extremely effective in practice

©2018 Kevin Jamieson

Boosting

Boosting

• 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):
An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):
An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!”

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

Boosting

Boosting

• 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!”

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

• 2001 Friedman: “Practical for arbitrary losses”

Weak learner definition (informal):

Boosting

• 1988 Kearns and Valiant: “Can weak learners be
combined to create a strong learner?”

An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!”

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

• 2001 Friedman: “Practical for arbitrary losses”

• 2014 Tianqi Chen: “Scale it up!” XGBoost

• 2017 MSR: “We can go faster” LightGBM

Weak learner definition (informal):

Haggle

©2018 Kevin Jamieson

Boosting and Additive
Models

Additive models

• Consider the first algorithm we used to get good
classification for MNIST. Given:

• Generate random functions:

• Learn some weights: 

• Classify new data:

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

pX

t=1

bwt�t(x)

!

bw = argmin
w

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

Additive models

• Consider the first algorithm we used to get good
classification for MNIST. Given:

• Generate random functions:

• Learn some weights: 

• Classify new data:

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

pX

t=1

bwt�t(x)

!

An interpretation:
Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin
w

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

Additive models

• Consider the first algorithm we used to get good
classification for MNIST. Given:

• Generate random functions:

• Learn some weights: 

• Classify new data:

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

pX

t=1

bwt�t(x)

!

An interpretation:
Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin
w

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

bw, b�1, . . . , b�t = arg min
w,�1,...,�p

nX

i=1

Loss

yi,

pX

t=1

wt�t(xi)

!

is in general computationally hard

Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

LS hinge loss

I
a

Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

AdaBoost: b(x, �): classifiers to {�1, 1}

L(y, f(x)) = exp(�yf(x))

Examples:

Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

b(x, �) =
1

1 + e��T x

b(x, �): regression trees

Boosted Regression Trees: L(y, f(x)) = (y � f(x))2
Idea: greedily add one function at a time

Examples:

Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

b(x, �) =
1

1 + e��T x

L(y, f(x)) = (y � f(x))2

Efficient: No harder than learning regression trees!

Boosted Regression Trees:
Idea: greedily add one function at a time

Examples:

Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3 �2}

b(x, �) =
1

1 + e��T x

b(x, �): regression trees

L(y, f(x)) = y log(f(x)) + (1� y) log(1� f(x))

Computationally hard to update

Examples:

Idea: greedily add one function at a time
Boosted Regression Trees:

Gradient Boosting

LS fit regression tree to n-dimensional gradient, take a step in that direction

Least squares, exponential loss easy. But what about cross entropy?

t

Gradient Boosting

AdaBoost uses 0/1 loss,
all other trees are minimizing
binomial deviance

Least squares, exponential loss easy. But what about cross entropy?

Additive models

• Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

Additive models

• Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

• Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

• Kind of like sparsity?

Additive models

• Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

• Computationally efficient with “weak” learners. But can
also use trees! Boosting can scale.

• Kind of like sparsity?

• Gradient boosting generalization with good software
packages (e.g., XGBoost, LGBM). Effective on Kaggle

• Robust to overfitting and can be dealt with with
“shrinkage” and “sampling”

Additive models

Bagging versus Boosting

• Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

• Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error

• Empirically, boosting appears to outperform bagging

