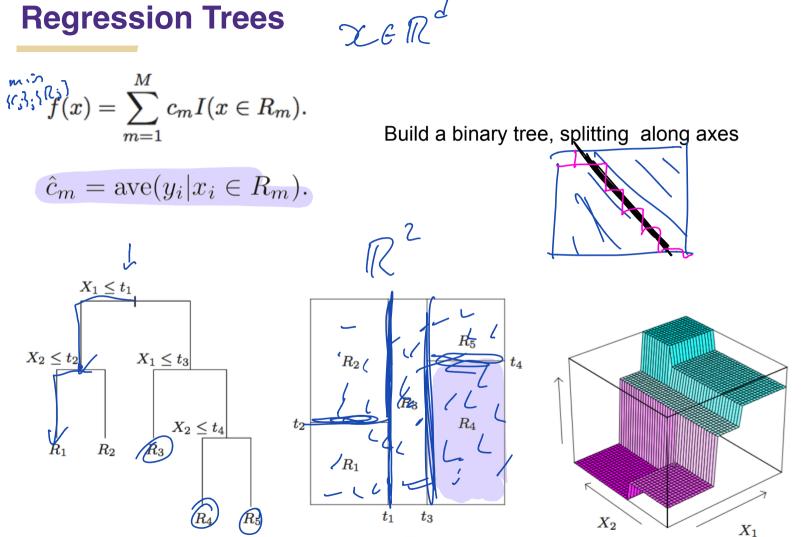
Announcements

- Evaluations
- Concerns over grades
- Google form sent out after class (for feedback, and incomplete requests)
- Future Offerings Discussion
- Lecture

UNIVERSITY of WASHINGTON



 X_1

Regression Trees

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$
Build a binary tree, splitting along axes

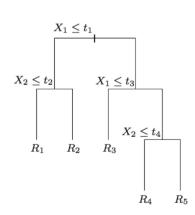
$$\hat{c}_m = \operatorname{ave}(y_i | x_i \in R_m).$$
How do you split?

$$f_{0,j} \xrightarrow{-dow}_{G_read} \xrightarrow{R_1(j,s)} = \{X | X_j \le s\} \text{ and } R_2(j,s) = \{X | X_j > s\}.$$
Then we seek the splitting variable j and split point s that solve

$$\max_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2\right].$$
When do you stop?

Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute
 - Split on arg max $IG(X_i) = \arg \max_i H(Y) H(Y \mid X_i)$
- Recurse
- Prune



$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$

Decision Trees

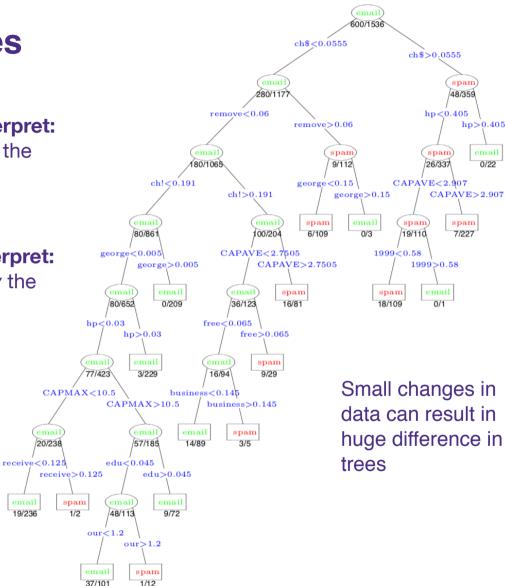
Trees are easy to interpret:

- You can explain how the classifier came to the conclusion it did

Trees are hard to interpret:

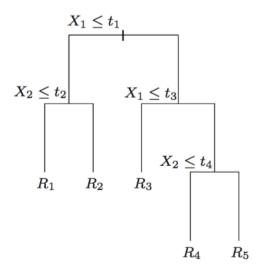
- Tough to explain why the classifier came to the conclusion it did

19/236



Decision Trees

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m).$$



• Trees

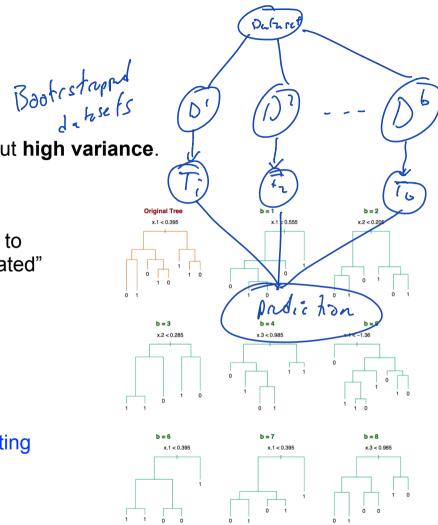
- have low bias, high variance
- deal with categorial variables well
- intuitive, interpretable (maybe)
- good software exists
- Some theoretical guarantees

UNIVERSITY of WASHINGTON

Tree methods have low bias but high variance.

One way to reduce variance is to construct a lot of "lightly correlated" trees and average them:

"Bagging:" Bootstrap aggregating



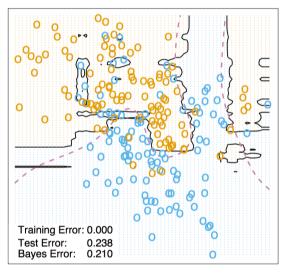
 $\mathcal{X}, \in \mathbb{R}^{P}$

Algorithm 15.1 Random Forest for Regression or Classification.

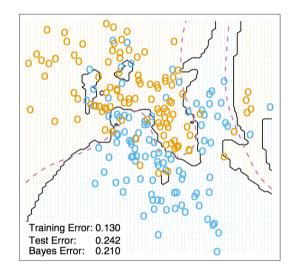
- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x: Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$. $m\sim p/3$ Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}_{rf}^B(x) = majority$ vote $\{\hat{C}_b(x)\}_1^B$. $m\sim sqrt(p)$

Random forrest



3 nearest neighbor



Given random variables Y_1, Y_2, \ldots, Y_B with $\mathbb{E}[Y_i] = y, \mathbb{E}[(Y_i - y)^2] = \sigma^2, \mathbb{E}[(Y_i - y)(Y_j - y)] = \rho \sigma^2$ Assume bias = 0 $\rho \sigma^2$ Variance of individual predictor $\rho \sigma^2$ Correlation between predictors

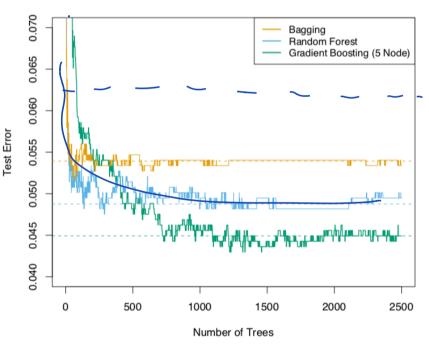
The Yi's are identically distributed but not independent

$$\mathbb{E}[(\frac{1}{B}\sum_{i=1}^{B}Y_i - y)^2] =$$

Given random variables Y_1, Y_2, \ldots, Y_B with $\mathbb{E}[Y_i] = y, \mathbb{E}[(Y_i - y)^2] = \sigma^2, \mathbb{E}[(Y_i - y)(Y_i - y)] = \rho\sigma^2$ σ^2 Variance of individual predictor Assume bias = 0 $ho\sigma^2$ Correlation between predictors m=p llen pm/ The Yi's are identically distributed but **not** independent m decreases 9 decreases $\mathbb{E}[(\frac{1}{R}\sum_{i=1}^{D}Y_{i}-y)^{2}] = \frac{1}{R}\sigma^{2} + (1-\frac{1}{R})\rho\sigma^{2}$ Or bies increase) Error dominated Goes to 0 as $B \to \infty$ by correlation

Averaging weakly correlated models results in biggest gains

The power of weakly correlated predictors:



Spam Data

Bagging: Averaged trees trained on bootstrapped datasets that used **all d variables**

Random forest: Averaged trees trained on bootstrapped datasets that **m<d random variables**

Gradient boosting: ignore for now

Takeaway: reducing correlation improves performance!

- Random Forests
 - have low bias, low variance
 - deal with categorial variables well
 - not that intuitive or interpretable
 - good software exists
 - Some theoretical guarantees
 - Can still overfit
 - Extremely effective in practice

UNIVERSITY of WASHINGTON

Weak learner definition (informal):

An algorithm \mathcal{A} is a *weak learner* for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1, 1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1/2 - \gamma$

Weak learner definition (informal):

An algorithm \mathcal{A} is a *weak learner* for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1, 1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1/2 - \gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost

Weak learner definition (informal):

An algorithm \mathcal{A} is a *weak learner* for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1, 1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1/2 - \gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost
- 2001 Friedman: "Practical for arbitrary losses"

Weak learner definition (informal):

An algorithm \mathcal{A} is a *weak learner* for a hypothesis class \mathcal{H} that maps \mathcal{X} to $\{-1, 1\}$ if for all input distributions over \mathcal{X} and $h \in \mathcal{H}$, we have that \mathcal{A} correctly classifies h with error at most $1/2 - \gamma$

- 1990 Robert Schapire: "Yup!"
- 1995 Schapire and Freund: "Practical for 0/1 loss" AdaBoost
- 2001 Friedman: "Practical for arbitrary losses"
- 2014 Tianqi Chen: "Scale it up!" XGBoost

Kaggle

• 2017 MSR: "We can go faster" LightGBM

Boosting and Additive Models

UNIVERSITY of WASHINGTON

- Consider the first algorithm we used to get good classification for MNIST. Given: $\{(x_i, y_i)\}_{i=1}^n \ x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$
- Generate **random** functions: $\phi_t : \mathbb{R}^d \to \mathbb{R}$ $t = 1, \dots, p$
- Learn some weights: $\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} \operatorname{Loss}\left(y_{i}, \sum_{t=1}^{p} w_{t}\phi_{t}(x_{i})\right)$
- Classify new data: $f(x) = \operatorname{sign}\left(\sum_{t=1}^{p} \widehat{w}_t \phi_t(x)\right)$

- Consider the first algorithm we used to get good classification for MNIST. Given: $\{(x_i, y_i)\}_{i=1}^n \ x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$
- Generate **random** functions: $\phi_t : \mathbb{R}^d \to \mathbb{R}$ $t = 1, \dots, p$
- Learn some weights: $\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} \operatorname{Loss} \left(y_i, \sum_{t=1}^{p} w_t \phi_t(x_i) \right)$
- Classify new data: $f(x) = \operatorname{sign}\left(\sum_{t=1}^{p} \widehat{w}_t \phi_t(x)\right)$

An interpretation:

Each $\phi_t(x)$ is a classification rule that we are assigning some weight \widehat{w}_t

- Consider the first algorithm we used to get good classification for MNIST. Given: $\{(x_i, y_i)\}_{i=1}^n \ x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$
- Generate **random** functions: $\phi_t : \mathbb{R}^d \to \mathbb{R}$ $t = 1, \dots, p$
- Learn some weights: $\widehat{w} = \arg\min_{w} \sum_{i=1}^{n} \operatorname{Loss} \left(y_i, \sum_{t=1}^{p} w_t \phi_t(x_i) \right)$

• Classify new data:
$$f(x) = sign\left(\sum_{t=1}^{p} \widehat{w}_t \phi_t(x)\right)$$

An interpretation:

Each $\phi_t(x)$ is a classification rule that we are assigning some weight \widehat{w}_t

$$\widehat{w}, \widehat{\phi}_1, \dots, \widehat{\phi}_t = \arg\min_{\substack{w, \phi_1, \dots, \phi_p \\ \downarrow}} \sum_{i=1}^n \operatorname{Loss}\left(y_i, \sum_{t=1}^p w_t \phi_t(x_i)\right)$$

is in general computationally hard

$$b(x, \gamma) \text{ is a function with parameters } \gamma \qquad \text{Examples:} \quad b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$
Algorithm 10.2 Forward Stagewise Additive Modeling.
1. Initialize $f_0(x) = 0$.
2. For $m = 1$ to M :
(a) Compute
 $(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^{N} L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$
(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m).$

Idea: greedily add one function at a time

 $b(x, \gamma)$ is a function with parameters γ

Examples: $b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$

$$1 + e^{-\gamma^{T}x}$$
$$b(x, \gamma) = \gamma_{1} \mathbf{1} \{ x_{3} \le \gamma_{2} \}$$

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(eta_m,\gamma_m) = rg\min_{eta,\gamma}\sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

AdaBoost:
$$b(x, \gamma)$$
: classifiers to $\{-1, 1\}$
 $L(y, f(x)) = \exp(-yf(x))$

 $b(x, \gamma)$ is a function with parameters γ

Examples: $b(x, \gamma) = \frac{1}{1 + e^{-\gamma^T x}}$

$$b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$$

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(eta_m,\gamma_m) = rg\min_{eta,\gamma}\sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time **Boosted Regression Trees:** $L(y, f(x)) = (y - f(x))^2$ $b(x, \gamma)$: regression trees

 $b(x, \gamma)$ is a function with parameters γ

Examples: b(x)

$$b(x,\gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$
$$b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$$

)

1

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(eta_m,\gamma_m) = rg\min_{eta,\gamma}\sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time

Boosted Regression Trees: $L(y, f(x)) = (y - f(x))^2$

$$L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)) = (\underbrace{y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma)}_{= (r_{im} - \beta b(x_i; \gamma))^2}, \quad r_{im} = y_i - f_{m-1}(x_i)$$

Efficient: No harder than learning regression trees!

 $b(x, \gamma)$ is a function with parameters γ

Examples: $b(x, \gamma)$

$$b(x,\gamma) = \frac{1}{1 + e^{-\gamma^T x}}$$
$$b(x,\gamma) = \gamma_1 \mathbf{1} \{ x_3 \le \gamma_2 \}$$

1

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m = 1 to M:
 - (a) Compute

$$(eta_m,\gamma_m) = rg\min_{eta,\gamma}\sum_{i=1}^N L(y_i,f_{m-1}(x_i)+eta b(x_i;\gamma)).$$

(b) Set $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$.

Idea: greedily add one function at a time Boosted Regression Trees: $L(y, f(x)) = y \log(f(x)) + (1 - y) \log(1 - f(x))$

 $b(x, \gamma)$: regression trees

Computationally hard to update

Gradient Boosting

Least squares, exponential loss easy. But what about cross entropy?

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg \min_{\gamma} \sum_{i=1}^N L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = rg \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma
ight).$$

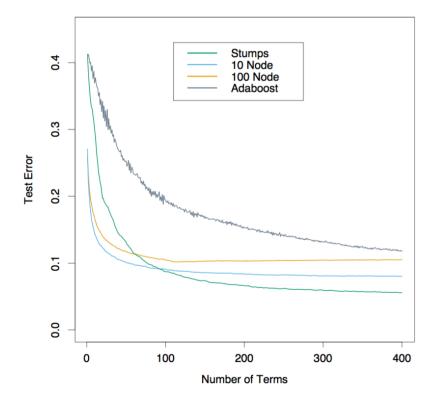
(d) Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm}).$$

3. Output $\hat{f}(x) = f_M(x)$.

LS fit regression tree to n-dimensional gradient, take a step in that direction

Gradient Boosting

Least squares, exponential loss easy. But what about cross entropy?



AdaBoost uses 0/1 loss, all other trees are minimizing binomial deviance

• Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.

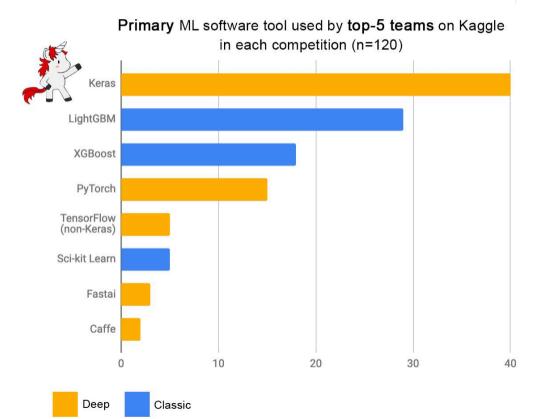
- Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.
- Computationally efficient with "weak" learners. But can also use trees! Boosting can scale.
- Kind of like sparsity?

- Boosting is popular at parties: Invented by theorists, heavily adopted by practitioners.
- Computationally efficient with "weak" learners. But can also use trees! Boosting can scale.
- Kind of like sparsity?
- Gradient boosting generalization with good software packages (e.g., *XGBoost, LGBM*). Effective on Kaggle
- Robust to overfitting and can be dealt with with "shrinkage" and "sampling"

 \sim

François Chollet 🥑 @fchollet · Apr 3, 2019

What machine learning tools do Kaggle champions use? We ran a survey among teams that ranked in the *top 5* of a competition since 2016.



- Bagging *averages* many **low-bias**, **lightly dependent** classifiers to reduce the variance
- Boosting *learns* linear combination of high-bias, highly dependent classifiers to reduce error
- Empirically, boosting appears to outperform bagging