
Announcements

- Evaluations
- Concerns over grades
- Google form sent out after class (for feedback, and incomplete requests) 
- Future Offerings Discussion
- Lecture
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Trees



Regression Trees

Build a binary tree, splitting  along axes
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Build a binary tree, splitting  along axes

How do you split?

When do you stop?

Regression Trees

towing



Decision Trees

• Start from empty decision tree
• Split on next best attribute (feature) 

– Use, for example, information gain to select attribute
– Split on 

• Recurse
• Prune



Decision Trees

Trees are easy to interpret: 
- You can explain how the 
classifier came to the 
conclusion it did 

Trees are hard to interpret: 
- Tough to explain why the 
classifier came to the 
conclusion it did 

Small changes in 
data can result in 
huge difference in 
trees 



• Trees 

• have low bias, high variance 
• deal with categorial variables 

well 

• intuitive, interpretable (maybe) 

• good software exists 

• Some theoretical guarantees 

Decision Trees
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Random Forests



Tree methods have low bias but high variance.

One way to reduce variance is to 
construct a lot of “lightly correlated” 
trees and average them: 

“Bagging:” Bootstrap aggregating

Random Forest
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m~p/3

m~sqrt(p)
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3 nearest neighborRandom forrest

Random Forest



E[( 1
B

BX

i=1

Yi � y)2] =

Given random variables Y1, Y2, . . . , YB with
E[Yi] = y, E[(Yi � y)2] = �2, E[(Yi � y)(Yj � y)] = ⇢�2

The Yi’s are identically distributed but not independent

Variance of individual predictor�2

Assume bias = 0
Correlation between predictors⇢�2

Random Forest



E[( 1
B

BX

i=1

Yi � y)2] =

Given random variables Y1, Y2, . . . , YB with
E[Yi] = y, E[(Yi � y)2] = �2, E[(Yi � y)(Yj � y)] = ⇢�2

The Yi’s are identically distributed but not independent

=
1

B
�2 + (1� 1

B
)⇢�2

Variance of individual predictor�2

Assume bias = 0
Correlation between predictors⇢�2

Goes to 0 as B ! 1 Error dominated
by correlation

Averaging weakly correlated models results in biggest gains

Random Forest
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Random Forest

The power of weakly correlated predictors:

Bagging: Averaged trees trained 
on bootstrapped datasets that 
used all d variables

Random forest: Averaged trees 
trained on bootstrapped datasets 
that m<d random variables

Gradient boosting: ignore for now

Takeaway: reducing correlation 
improves performance!

i



Random Forests

• Random Forests 

• have low bias, low variance 
• deal with categorial variables well 

• not that intuitive or interpretable 

• good software exists 

• Some theoretical guarantees  

• Can still overfit 

• Extremely effective in practice
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Boosting



Boosting

• 1988 Kearns and Valiant: “Can weak learners be 
combined to create a strong learner?” 

Weak learner definition (informal): 
An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �



• 1988 Kearns and Valiant: “Can weak learners be 
combined to create a strong learner?” 

Weak learner definition (informal): 
An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!” 

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost 

Boosting



Boosting

• 1988 Kearns and Valiant: “Can weak learners be 
combined to create a strong learner?” 

An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!” 

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost 

• 2001 Friedman: “Practical for arbitrary losses” 

Weak learner definition (informal): 



Boosting

• 1988 Kearns and Valiant: “Can weak learners be 
combined to create a strong learner?” 

An algorithm A is a weak learner for a hypothesis class H that maps X to
{�1, 1} if for all input distributions over X and h 2 H, we have that A correctly
classifies h with error at most 1/2� �

• 1990 Robert Schapire: “Yup!” 

• 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost 

• 2001 Friedman: “Practical for arbitrary losses” 

• 2014 Tianqi Chen: “Scale it up!” XGBoost 

• 2017 MSR: “We can go faster” LightGBM

Weak learner definition (informal): 

Haggle
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Boosting and Additive 
Models



Additive models

• Consider the first algorithm we used to get good 
classification for MNIST. Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

 
pX

t=1

bwt�t(x)

!

bw = argmin
w

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!



Additive models

• Consider the first algorithm we used to get good 
classification for MNIST. Given: 

• Generate random functions: 

• Learn some weights: 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Additive models

• Consider the first algorithm we used to get good 
classification for MNIST. Given: 

• Generate random functions: 

• Learn some weights: 

• Classify new data:  

{(xi, yi)}ni=1 xi 2 Rd, yi 2 {�1, 1}

�t : Rd ! R t = 1, . . . , p

f(x) = sign

 
pX

t=1

bwt�t(x)

!

An interpretation:
Each �t(x) is a classification rule that we are assigning some weight bwt

bw = argmin
w

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!

bw, b�1, . . . , b�t = arg min
w,�1,...,�p

nX

i=1

Loss

 
yi,

pX

t=1

wt�t(xi)

!

is in general computationally hard



Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Examples:

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

LS hinge loss

I
a



Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

Idea: greedily add one function at a time

b(x, �) =
1

1 + e��T x

AdaBoost: b(x, �): classifiers to {�1, 1}

L(y, f(x)) = exp(�yf(x))

Examples:



Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

b(x, �) =
1

1 + e��T x

b(x, �): regression trees

Boosted Regression Trees: L(y, f(x)) = (y � f(x))2
Idea: greedily add one function at a time

Examples:



Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

b(x, �) =
1

1 + e��T x

L(y, f(x)) = (y � f(x))2

Efficient: No harder than learning regression trees!

Boosted Regression Trees: 
Idea: greedily add one function at a time

Examples:



Forward Stagewise Additive models

b(x, �) is a function with parameters �

b(x, �) = �11{x3  �2}

b(x, �) =
1

1 + e��T x

b(x, �): regression trees

L(y, f(x)) = y log(f(x)) + (1� y) log(1� f(x))

Computationally hard to update

Examples:

Idea: greedily add one function at a time
Boosted Regression Trees: 



Gradient Boosting

LS fit regression tree to n-dimensional gradient, take a step in that direction

Least squares, exponential loss easy. But what about cross entropy?

t



Gradient Boosting

AdaBoost uses 0/1 loss,
all other trees are minimizing 
binomial deviance

Least squares, exponential loss easy. But what about cross entropy?



Additive models

• Boosting is popular at parties: Invented by theorists, 
heavily adopted by practitioners. 



Additive models

• Boosting is popular at parties: Invented by theorists, 
heavily adopted by practitioners. 

• Computationally efficient with “weak” learners. But 
can also use trees! Boosting can scale. 

• Kind of like sparsity? 



Additive models

• Boosting is popular at parties: Invented by theorists, 
heavily adopted by practitioners. 

• Computationally efficient with “weak” learners. But can 
also use trees! Boosting can scale. 

• Kind of like sparsity? 

• Gradient boosting generalization with good software 
packages (e.g., XGBoost, LGBM). Effective on Kaggle 

• Robust to overfitting and can be dealt with with 
“shrinkage” and “sampling” 



Additive models



Bagging versus Boosting

• Bagging averages many low-bias, lightly 
dependent classifiers to reduce the variance 

• Boosting learns linear combination of high-bias, 
highly dependent classifiers to reduce error 

• Empirically, boosting appears to outperform bagging


