Announcements

- Evaluations

- Concerns over grades

- Google form sent out after class (for feedback, and incomplete requests)
- Future Offerings Discussion

- Lecture

Trees

UNIVERSITY of WASHINGTON

Regression Trees

M
f(@) =) cml(z € Rpm).
m=1

Cm = ave(y;|x; € Ry,).

Build a binary tree, splitting along axes

Regression Trees

M
f(@)=)_ cmI(z € Rm).

Build a binary tree, splitting along axes

How do you split?

A

Cm = ave(y;|x; € Ry,).

Ri(7,s) = {X|X,; <s} and Ra(j,s) ={X|X; > s}.

X1 < tl{ Then we seek the splitting variable 5 and split point s that solve
. . 2 . 2
min | min — C -+ min — C }
X2 S b2 X1 < ts I8 [o ERZ(j s)(yZ V <, ERZ(j s)(yz g
7 1) 7 2)
|(_‘ Xo <ty
Ri Rz Rs When do you stop?

Decision Trees

Start from empty decision tree

Split on next best attribute (feature)

— Use, for example, information gain to select attribute

— Spliton argmaxIG(X;) = argmax H(Y) — H(Y | X;)
1 1

* Recurse
* Prune . M
=h f(@)=)_ cmI(z € Rm).
m=1

(email)

Decision Trees //\

ch$>0.0555

/([nail) (/hl ,,,,,,)
eomﬂ\ 48/354\
remove<0.06 hp<0.405
Trees are easy to interpret: / / hp>0.405
. \
- You can explain how the) Gopam) Copam) | il |
o aonos 9/112 26/33 0/22
classifier came to the chl<olasn \ /\ /\
ConC|USi0n |t d|d / (h'>() 191 / g(‘ur).',(‘\>().15 / (fAPAi/b»z.s)m
7& ;moi o 71;,(< spe|
Trees are hard to interpret: “<[70 o e T o
- Tough to explain why the = o] | L
Classrfler came to the /80/652\ 0/209 /36/123\ 16/81 18/109 0/
conclusion it did \ e T roem 0.0
<w S [ema] @ > \|
/77/423\ 3/229 /16/94\ 9/29 _
CAPMAX<10.5 business<0.14 Small changes in
CAPMAX>10.5 business>0.145

data can result in
/20/2314&& /s7/1aé\ 14/89]3/‘5“]‘ huge difference in

receive<0.12 edu<0.045 r
eive >() 125 lu>() 045 t eeS
‘ | ‘.\‘p:unl (er) | na I
19/236 12 /48/1 1 9172
our<1.2
our>1.2
| s]x:nn‘

37/101 112

Decision Trees

Iy * Trees
f(@) =) cmI(z € Rm). * have low bias, high variance
m=1
 deal with categorial variables
well
X15h * intuitive, interpretable (maybe)
e good software exists
X2 < t2 X; <ts

« Some theoretical guarantees

Random Forests

UNIVERSITY of WASHINGTON

Random Forest

Tree methods have low bias but high variance.

construct a lot of “lightly correlated”

One way to reduce variance is to | ﬁ

trees and average them: D rl
“Bagging:” Bootstrap aggregating

Random Forest

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size 1, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}7.
To make a prediction at a new point z:
Regression: f2(z) = & o Ti(z). m-~p/3

Classification: Let Cy(z) be the class prediction of the bth random-forest
tree. Then CZ(z) = majority vote {Cy(z)}2. m~sqrt(p)

Random Forest

Random forrest

Training Error: 0.000

Test Error: 0.238
Bayes Error: 0.210

3 nearest neighbor

Training Error: 0.130 0 @O
Test Error: 0.242
Bayes Error: 0.210 (0]

Random Forest
Given random variables Y7,Y5,...,Yp with
E[Y;] = y, E[(Y; — y)?] = 0%, E[(Y; — y)(Y; —)] = po
2

O Variance of individual predictor
Assume bias =0

pO‘ 2 Correlation between predictors

The Yi's are identically distributed but not independent

Bl(> Y-)] =

Random Forest

Given random variables Y7,Y5,...,Yp with
E[Y;] = y, E[(Y; — 1)2] = o2, E[(Y; - y)(¥; —)] = po?

2

O Variance of individual predictor
Assume bias =0

pO‘ 2 Correlation between predictors

The Yi's are identically distributed but not independent

1 & 1 1
E[(= Y, — y)?] = 2 _ 2
[(B ;:1: y)°] T + (1 B)pa
Goes to 0 as B — o© Error dominated

by correlation

Averaging weakly correlated models results in biggest gains

Random Forest

Test Error

0.040 0.045 0.050 0.055 0.060 0.065 0.070

The power of weakly correlated predictors:

Spam Data

Bagging
—— Random Forest
—— Gradient Boosting (5 Node)

lll(W i u L-AaTr—u

"Tlllll l“"ll’ll[‘M’” b

II I L

| | ! | |
500 1000 1500 2000 2500

Number of Trees

Bagging: Averaged trees trained
on bootstrapped datasets that
used all d variables

Random forest: Averaged trees
trained on bootstrapped datasets
that m<d random variables

Gradient boosting: ignore for now

Takeaway: reducing correlation
improves performance!

Random Forests

 Random Forests
e have low bias, low variance
 deal with categorial variables well
* not that intuitive or interpretable
e good software exists
« Some theoretical guarantees
» Can still overfit

e Extremely effective in practice

Boosting

UNIVERSITY of WASHINGTON

Boosting

« 1988 Kearns and Valiant; “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

Boosting

« 1988 Kearns and Valiant; “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to

{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

Boosting

« 1988 Kearns and Valiant; “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to

{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”
« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost

« 2001 Friedman: “Practical for arbitrary losses”

Boosting

« 1988 Kearns and Valiant; “Can weak learners be
combined to create a strong learner?”

Weak learner definition (informal):

An algorithm A is a weak learner for a hypothesis class H that maps X to
{—1, 1} if for all input distributions over X and h € H, we have that A correctly
classifies h with error at most 1/2 —~

* 1990 Robert Schapire: “Yup!”

« 1995 Schapire and Freund: “Practical for 0/1 loss” AdaBoost
« 2001 Friedman: “Practical for arbitrary losses”

« 2014 Tiangi Chen: “Scale it up!” XGBoost

« 2017 MSR: “We can go faster” LightGBM

Boosting and Additive
Models

Additive models

» Consider the first algorithm we used to get good
classification for MNIST. Given: {(z;,v:)}i-1 z; e R,y € {—1,1}

 Generate random functions: ¢, :R* = R ¢=1,.

 Learn some weights: = argmmZLOSS (yZ,Zwtqbt ;)
=1

 Classify new data: f(z) =sign (Zwt¢t)

Additive models

» Consider the first algorithm we used to get good
classification for MNIST. Given: {(z;,v:)}i-1 z; e R,y € {—1,1}

 Generate random functions: ¢, :R* = R ¢=1,.

 Learn some weights: = argmmZLOSS (yZ,Zwtqbt ;)
=1

 Classify new data: f(z) =sign (Zwt¢t)

An interpretation:
Each ¢;(x) is a classification rule that we are assigning some weight w;

Additive models

Consider the first algorithm we used to get good
classification for MNIST. Given: {(z;,v:)}i-1 z; e R,y € {—1,1}

Generate random functions: ¢, :R* = R ¢=1,.

 Learn some weights: = argmmZLOSS (yZ,Zwtqbt ;)
=1

Classify new data: f(z) =sign (Zwt¢t)

An interpretation:
Each ¢;(z) is a classification rule that we are assigning some weight w;

.....

n p
@, d,. ..,y = arg ¢m1n Z Loss <yi, Z wtgbt(:ci)>
PPy t=1

IS in general computationally hard

Forward Stagewise Additive models

b(z,7) is a function with parameters v Examples: b(x,7) = 1 1)
+e T
Algorithm 10.2 Forward Stagewise Additive Modeling. b(iE‘ ’Y) _ ’711{333 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute
N
(Bm,Ym) = arg %I?ZL(%‘, fm—1(z:) + Bb(zi;7))-
"=l

(b) Set fm(z) = fm—-1(x) + Bmb(x;¥m).

|ldea: greedily add one function at a time

Forward Stagewise Additive models

b(z,7) is a function with parameters v Examples: b(x,7) = 1 1)
+e T
Algorithm 10.2 Forward Stagewise Additive Modeling. b(iE‘ ’Y) _ ’711{333 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute
N
(Bms¥m) = arg I/IBIEIZL(%‘, fm—1(z:) + Bb(zi;7)).
=1

(b) Set fm(z) = fm—1(x) + Bmb(x;¥m).

|dea: greedily add one function at a time

AdaBoost: b(z,~): classifiers to {—1,1}
L(y, f(z)) = exp(=yf(x))

Forward Stagewise Additive models

b(z,7) is a function with parameters v Examples: b(x,7) = 1 1)
+e T
Algorithm 10.2 Forward Stagewise Additive Modeling. b(iE‘ ’Y) — v 1{333 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute
N
(Bms¥m) = arg I/IBIEIZL(%‘, fm—1(zi) + Bb(z4;7)).
=1

(b) Set fm(z) = fm—1(x) + Bmb(x;¥m).

|dea: greedily add one function at a time
Boosted Regression Trees: L(y, f(z)) = (y — f(z))?

b(z,v): regression trees

Forward Stagewise Additive models

b(z,v) is a function with parameters v Examples: b(z,7) = 1 _
l+e 7 ®
Algorithm 10.2 Forward Stagewise Additive Modeling. b(CE, ’Y) = v 1 { T3 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute
N
(Bms Ym) = argmin } L(yi, fn—1(2:) + Bb(wi;7)).
=1

(b) Set fu(z) = fm—1(x) + Bmb(x;¥m)-

|dea: greedily add one function at a time
Boosted Regression Trees: L(y, f(z)) = (y — f(z))?

L(Yi, fm-1(z:) + Bb(zi57)) = (Y — frm—1(zi) — Bb(zi;7))
- (Tz'm - ﬂb($i§’7))2> Tim = Yi — fm—1(@i)

Efficient: No harder than learning regression trees!

Forward Stagewise Additive models

b(z,v) is a function with parameters v Examples: b(z,7) = 1 1)
+e T
Algorithm 10.2 Forward Stagewise Additive Modeling. b (:C ’Y) — v 1 {333 < 72}

1. Initialize fo(z) = 0.
2. Form =1 to M:

(a) Compute

N
(Bms Ym) = argmin } L(yi, fn—1(2:) + Bb(wi;7)).
"=l

(b) Set fu(z) = fm—1(x) + Bmb(x;¥m)-

|dea: greedily add one function at a time
Boosted Regression Trees: L(y, f(z)) = ylog(f(z)) + (1 — y)log(l — f(x))

b(x,7): regression trees

Computationally hard to update

Gradient Boosting

Least squares, exponential loss easy. But what about cross entropy?

Algorithm 10.3 Gradient Tree Boosting Algorithm.

1. Initialize fo(z) = arg min, Zfil L(yi,").
2. Form =1 to M:

(a) Fori=1,2,..., N compute

mm — =

(b) Fit a regression tree to the targets r;,, giving terminal regions
Rim, j=1,2,...,Jn.

(c) For 7 =1,2,...,Jmn compute

_a'rgmln Z yz’fm 1 mz)+’7)
T;€R;m

(d) Update fim(z) = frn-1(z) + Eg 2 YimI(z € Rjm).

3. Output f(z) = far(z).

LS fit regression tree to n-dimensional gradient, take a step in that direction

Gradient Boosting

Least squares, exponential loss easy. But what about cross entropy?

Stumps
10 Node

0.4

100 Node
Adaboost AdaBoost uses 0/1 loss,

all other trees are minimizing
binomial deviance

0.3
|

Test Error

0.2

0.1

0.0
|

0 100 200 300 400

Number of Terms

Additive models

* Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

Additive models

* Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But
can also use trees! Boosting can scale.

 Kind of like sparsity?

Additive models

* Boosting is popular at parties: Invented by theorists,
heavily adopted by practitioners.

« Computationally efficient with “weak” learners. But can
also use trees! Boosting can scale.

 Kind of like sparsity?

« Gradient boosting generalization with good software
packages (e.g., XGBoost, LGBM). Effective on Kaggle

* Robust to overfitting and can be dealt with with
“shrinkage” and “sampling”

Additive models

/4 , Francois Chollet & @fchollet - Apr 3, 2019 v

\ég What machine learning tools do Kaggle champions use? We ran a survey
among teams that ranked in the *top 5* of a competition since 2016.

Primary ML software tool used by top-5 teams on Kaggle
in each competition (n=120)

Keras

LightGBM
XGBoost

PyTorch

TensorFlow
(non-Keras)

Sci-kit Learn
Fastai
Caffe

0 10 20 30 40

. Deep . Classic

https://twitter.com/fchollet

Bagging versus Boosting

« Bagging averages many low-bias, lightly
dependent classifiers to reduce the variance

* Boosting learns linear combination of high-bias,
highly dependent classifiers to reduce error

« Empirically, boosting appears to outperform bagging

