
©Kevin Jamieson

Structured Neural Networks

Neural Network Architecture

5

The neural network architecture is defined by the number of layers,
and the number of nodes in each layer, but also by allowable edges.

Neural Network Architecture
Objects are often
localized in space so to
find the faces in an
image, not every pixel is
important for classification
—makes sense to drag a
window across an image.

Similarly, to identify
edges or other
local structure, it
makes sense to
only look at local
information

vs.

Convolution of images (2d convolution)

Image I
Filter K

I ⇤K

Learning Features with Convolutional Networks

14x14x64

6

6

3 27

27

Recall: Convolutional neural
networks (CNN) are just regular
fully connected (FC) neural
networks with some
connections removed.
Train with SGD!

reshape

output layer

poolCONV hidden layer FC hidden layer

Training Convolutional Networks

14x14x64

6

6

3 27

27

reshape

output layer

poolCONV hidden layer FC hidden layer

Real example network: LeNet

Training Convolutional Networks

Real example network: LeNet
Real example network: LeNet

Real networks

Data augmentation?
Batch norm?

RELU leakiness
slope

Learning rate schedule

⌘1
⌘2
⌘3

t1 t2t3
⌘4

Residual Network of
[HeZhangRenSun’15]

n1 layers of f1 filters

Reduce spatial
dimension

n0 layers of f0 filters

n2 layers of f2 filters

n3 layers of f3 filters

Reduce spatial
dimension

Reduce spatial
dimension

batchsizeModern networks have
dozens of parameters to tune.

©Kevin Jamieson 2018

Hyperparameter
Optimization

©Kevin Jamieson 2018

\
Eval setNin = 784

Nout = 10
Nhid

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [101, 103]

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

hyperparameters

Training set

hyperparameters

Nin = 784

Nout = 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [101, 103]

Nhid

\

bf

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval setTraining set

Nin = 784

Nout = 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [101, 103]

Nhid

\

bf

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

hyperparameters

Training set

Nin = 784

Nout = 10

`2-penalty � 2 [10�6, 10�1]

learning rate ⌘ 2 [10�3, 10�1]

hidden nodes Nhid 2 [101, 103]

Nhid

\

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Eval set

hyperparameters

Training set

Nin = 784

Nout = 10
Nhid

Training set
\

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

How do we choose
hyperparameters to train
and evaluate?

Eval set

How do we choose hyperparameters to train
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid

How do we choose hyperparameters to train
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid

Random search: Hyperparameters
randomly chosen

How do we choose hyperparameters to train
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid

Random search: Hyperparameters
randomly chosen

Black-box Optimization:
Hyperparameters
adaptively chosen

1

2

3

4

5

6
7

8

9

10

1112 13

14
15

16

How does it work?

Black-Box Optimization:
Hyperparameters
adaptively chosen

1

2

3

4

5

6
7

8

9

10

11
12

13

14 15
16

epochs

ev
al

-lo
ss

How computation time
was spent?

András György and Levente Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014.

Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for computationally adaptive model selection. COLT, 2012.

Domhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by
extrapolation of learning curves. In IJCAI, 2015.

Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar. Hyperband: Hyperband: A Novel Bandit-Based Approach to Hyperparameter. JMLR 2018.

Recent work attempts to speed up hyperparameter evaluation by
stopping poor performing settings before they are fully trained.

(10�1.6, 10�2.4, 101.7)

(10�1.0, 10�1.2, 102.6)

(10�1.2, 10�5.7, 101.4)

(10�2.4, 10�2.0, 102.9)

(10�2.6, 10�2.9, 101.9)

(10�2.7, 10�2.5, 102.4)

(10�1.8, 10�1.4, 102.6)

(10�1.4, 10�2.1, 101.5)

(10�1.9, 10�5.8, 102.1)

(10�1.8, 10�5.6, 101.7)

0.0577
0.182
0.0436
0.0919
0.0575
0.0765
0.1196
0.0834
0.0242
0.029

Hyperparameters Eval-loss

Hyperparameter Optimization

In general, hyperparameter optimization is
non-convex optimization and little is
known about the underlying function (only
observe validation loss)

Tools for different purposes:
- Very few evaluations: use random search (and pray) or be clever
- Few evaluations and long-running computations: see refs on last slide
- Moderate number of evaluations (but still exp(#params)) and high

accuracy needed: use Bayesian Optimization
- Many evaluations possible: use random search. Why overthink it?

Your time is valuable, computers are cheap:
Do not employ “grad student descent” for hyper parameter search.
Write modular code that takes parameters as input and automate this
embarrassingly parallel search.

©Kevin Jamieson

Unsupervised
Learning revisited

Autoencoders

x 2 Rd

Find a low dimensional representation for your data by predicting your data

Input:

Code:
f(x) 2 Rr

bx = g(f(x)) 2 Rd
Output:

Three major applications
1. De-noising
2. Feature extraction
3. Manifold learning

Encoder Decoder

minimize
f,g

Pn
i=1 kxi � g(f(xi))k22

Autoencoders

x 2 Rd
Input:

Code:
f(x) 2 Rr

bx = g(f(x)) 2 Rd
Output:

What if f(X) = Ax and g(y) = By?

minimize
f,g

Pn
i=1 kxi � g(f(xi))k22

Generative models
Related application: Generating new samples (see variational autoencoders
(VAE) or generative adversarial networks (GAN)

Basic Text Modeling

Can we embed words
into a latent space?

This embedding came from
directly querying for
relationships.

word2vec is a popular
unsupervised learning
approach that just uses a text
corpus (e.g. nytimes.com)

Word embeddings, word2vec

http://nytimes.com

Word embeddings, word2vec

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Word embeddings, word2vec

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Training neural network to predict co-occuring words. Use first layer weights as
embedding, throw out output layer

Word embeddings, word2vec

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Training neural network to predict co-occuring words. Use first layer weights as
embedding, throw out output layer

ehxants,ycari
X

i

ehxants,yii

word2vec outputs

slide: https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

king - man + woman = queen

country - capital

Bag of Words

n documents/articles with lots of text

Questions:
- How to get a feature representation of each article?
- How to cluster documents into topics?

xi 2 RDith document:

xi,j = proportion of times jth word occurred in ith document

Bag of words model:

Bag of Words

n documents/articles with lots of text

- Can we embed each document into a feature space?

Bag of Words

xi 2 RDith document:

xi,j = proportion of times jth word occurred in ith document

Bag of words model:

Given vectors, run k-means or Gaussian mixture model to find k clusters/topics

n documents/articles with lots of text

- Can we embed each document into a feature space?

Nonnegative matrix factorization (NMF)

Nonnegative
Matrix factorization:

Also see latent Dirichlet factorization (LDA)

W 2 Rm⇥d
+ , H 2 Rn⇥d

+

A 2 Rm⇥n

d is number of topics

min kA�WH
T k2F

Ai,j = frequency of jth word in document i

Nonnegative matrix factorization (NMF)

Nonnegative
Matrix factorization:

Also see latent Dirichlet factorization (LDA)

W 2 Rm⇥d
+ , H 2 Rn⇥d

+

A 2 Rm⇥n

d is number of topics

min kA�WH
T k2F

Ai,j = frequency of jth word in document i

Each column of H represents a cluster of a topic,
Each row W is some weights a combination of topics

TF*IDF

n documents/articles with lots of text

How to get a feature representation of each article?

1. For each document d compute the proportion of times
word t occurs out of all words in d, i.e. term frequency

2. For each word t in your corpus, compute the proportion of
documents out of n that the word t occurs, i.e., document frequency

3. Compute score for word t in document d as

TFd,t

DFt

TFd,t log(
1

DFt
)

http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Two Hearted Ale - Input ~2500 natural language reviews

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Two Hearted Ale - Weighted Bag of Words:

Weighted count vector
for the ith beer:

zi 2 R400,000

Cosine distance:

d(zi, zj) = 1� zT
i zj

||zi|| ||zj ||

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Two Hearted Ale - Nearest Neighbors:
Bear Republic Racer 5
Avery IPA
Stone India Pale Ale (IPA)
Founders Centennial IPA
Smuttynose IPA
Anderson Valley Hop Ottin IPA
AleSmith IPA
BridgePort IPA
Boulder Beer Mojo IPA
Goose Island India Pale Ale
Great Divide Titan IPA
New Holland Mad Hatter Ale
Lagunitas India Pale Ale
Heavy Seas Loose Cannon Hop3
Sweetwater IPA

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Find an embedding {x1, . . . , xn} ⇢ Rd such that

||xk � xi|| < ||xk � xj || whenever d(zk, zi) < d(zk, zj)

for all 100-nearest neighbors.

(107 constraints, 105 variables)

Solve with hinge loss and stochastic gradient descent.

Could have also used local-linear-embedding,
max-volume-unfolding, kernel-PCA, etc.

(20 minutes on my laptop) (d=2,err=6%) (d=3,err=4%)

Reviews for
each beer

Bag of Words
weighted by

TF*IDF
Embedding in
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling

distance in 400,000
dimensional “word space”

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Sanity check: styles
should cluster together
and similar styles
should be close.

IPA

Pale ale
Brown ale

Porter

Stout

Doppelbock

Belgian dark
Lambic

Wheat

Belgian light
Wit

Light lager

Pilsner

Amber
Blond

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for
each beer

Bag of Words
weighted by

TF*IDF

Get 100 nearest
neighbors using
cosine distance

Non-metric
multidimensional

scaling
Embedding in
d dimensions

Sanity check: styles
should cluster together
and similar styles
should be close.

IPA

Pale ale
Brown ale

Porter

Stout

Doppelbock

Belgian dark
Lambic

Wheat

Belgian light
Wit

Light lager

Pilsner

Amber
Blond

Sequences and
Recurrent Neural
Networks

Time-dependent data

xt 2 R : AAPL stock
price at time t

Prediction model: p(xt+1|xt, xt�1, xt�2, . . .)

Time-dependent data

xt 2 R : AAPL stock
price at time t

Prediction model: p(xt+1|xt, xt�1, xt�2, . . .)

ht 2 Rd: hidden latent
state of AAPL

⇡ p(xt+1|xt, ht+1)

Time-dependent data

xt 2 R : AAPL stock
price at time t

Prediction model: p(xt+1|xt, xt�1, xt�2, . . .)

ht 2 Rd: hidden latent
state of AAPL

ht+1 = g(ht, xt)

Hidden state and g never observed, but learned!

⇡ p(xt+1|xt, ht+1)

Zhang et al. “Dive into Deep Learning”

Time-dependent data xt 2 R : AAPL stock
price at time t

Prediction model: p(xt+1|xt, xt�1, xt�2, . . .)

ht 2 Rd: hidden latent
state of AAPL

ht+1 = g(ht, xt)

Hidden state and g never observed, but learned!

⇡ p(xt+1|xt, ht+1)

Explicit:

ht+1 = �(Aht +Bxt)

bxt+1 = Cht+1 +Dxt

X

t

(xt � bxt)
2

Zhang et al. “Dive into Deep Learning”

Time-dependent data

Prediction model: p(xt+1|xt, xt�1, xt�2, . . .)

ht+1 = g(ht, xt)

Hidden state and g never observed, but learned!

⇡ p(xt+1|xt, ht+1)

Model also works with text!

Zhang et al. “Dive into Deep Learning”

Time-dependent data

Prediction model: p(xt+1|xt, xt�1, xt�2, . . .)

ht+1 = g(ht, xt)

Hidden state and g never observed, but learned!

⇡ p(xt+1|xt, ht+1)

ot o0 o1 o2
Recurrent Neural Network

Slide: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Variable length sequences

Recurrent Neural Network

Standard RNN

Gated RNN
LSTM

Slide: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

And MORE!
- Transformers
- Attention
- Bi-directional

