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Structured Neural Networks 



Neural Network Architecture

5

The neural network architecture is defined by the number of layers, 
and the number of nodes in each layer, but also by allowable edges. 



Neural Network Architecture
Objects are often 
localized in space so to 
find the faces in an 
image, not every pixel is 
important for classification
—makes sense to drag a 
window across an image.

Similarly, to identify 
edges or other 
local structure, it 
makes sense to 
only look at local 
information 

vs.



Convolution of images (2d convolution)

Image I
Filter K

I ⇤K



Learning Features with Convolutional Networks
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Recall: Convolutional neural 
networks (CNN) are just regular 
fully connected (FC) neural 
networks with some 
connections removed. 
Train with SGD!

reshape

output layer

poolCONV hidden layer FC hidden layer



Training Convolutional Networks
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reshape

output layer

poolCONV hidden layer FC hidden layer

Real example network: LeNet



Training Convolutional Networks

Real example network: LeNet
Real example network: LeNet



Real networks

Data augmentation?
Batch norm?

RELU leakiness  
slope

Learning rate schedule

⌘1
⌘2
⌘3

t1 t2t3
⌘4

Residual Network of  
[HeZhangRenSun’15]

n1 layers of f1 filters

Reduce spatial 
dimension

n0 layers of f0 filters

n2 layers of f2 filters

n3 layers of f3 filters

Reduce spatial 
dimension

Reduce spatial 
dimension

batchsizeModern networks have 
dozens of parameters to tune.
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Hyperparameter 
Optimization
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hyperparameters
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How do we choose hyperparameters to train 
and evaluate?
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How do we choose hyperparameters to train 
and evaluate?

Grid search:
Hyperparameters
on 2d uniform grid

Random search: Hyperparameters
randomly chosen

Black-box Optimization:
Hyperparameters
adaptively chosen
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How does it work?

Black-Box Optimization:
Hyperparameters
adaptively chosen
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epochs
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How computation time 
was spent?

András György and Levente Kocsis. Efficient multi-start strategies for local search algorithms. JAIR, 41, 2011.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv:1406.3896, 2014. 

Alekh Agarwal, Peter Bartlett, and John Duchi. Oracle inequalities for computationally adaptive model selection. COLT, 2012. 

Domhan, T., Springenberg, J. T., and Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by 
extrapolation of learning curves. In IJCAI, 2015. 

Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar. Hyperband: Hyperband: A Novel Bandit-Based Approach to Hyperparameter. JMLR 2018.

Recent work attempts to speed up hyperparameter evaluation by 
stopping poor performing settings before they are fully trained.
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Hyperparameter Optimization

In general, hyperparameter optimization is 
non-convex optimization and little is 
known about the underlying function (only 
observe validation loss)

Tools for different purposes:
- Very few evaluations: use random search (and pray) or be clever
- Few evaluations and long-running computations: see refs on last slide
- Moderate number of evaluations (but still exp(#params)) and high 

accuracy needed: use Bayesian Optimization
- Many evaluations possible: use random search. Why overthink it?

Your time is valuable, computers are cheap: 
Do not employ “grad student descent” for hyper parameter search. 
Write modular code that takes parameters as input and automate this 
embarrassingly parallel search.
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Unsupervised 
Learning revisited



Autoencoders

x 2 Rd

Find a low dimensional representation for your data by predicting your data

Input: 

Code: 
f(x) 2 Rr

bx = g(f(x)) 2 Rd
Output:

Three major applications
1. De-noising
2. Feature extraction
3. Manifold learning

Encoder Decoder

minimize
f,g

Pn
i=1 kxi � g(f(xi))k22



Autoencoders

x 2 Rd
Input: 

Code: 
f(x) 2 Rr

bx = g(f(x)) 2 Rd
Output:

What if f(X) = Ax and g(y) = By?

minimize
f,g

Pn
i=1 kxi � g(f(xi))k22



Generative models
Related application: Generating new samples (see variational autoencoders 
(VAE) or generative adversarial networks (GAN) 



Basic Text Modeling



Can we embed words 
into a latent space?

This embedding came from 
directly querying for 
relationships. 

word2vec is a popular 
unsupervised learning 
approach that just uses a text 
corpus (e.g. nytimes.com)

Word embeddings, word2vec

http://nytimes.com


Word embeddings, word2vec

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



Word embeddings, word2vec

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Training neural network to predict co-occuring words. Use first layer weights as 
embedding, throw out output layer



Word embeddings, word2vec

slide: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Training neural network to predict co-occuring words. Use first layer weights as 
embedding, throw out output layer

ehxants,ycari
X

i

ehxants,yii



word2vec outputs

slide: https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

king - man + woman = queen

country - capital



Bag of Words

n documents/articles with lots of text 

Questions: 
- How to get a feature representation of each article? 
- How to cluster documents into topics? 

xi 2 RDith document:

xi,j = proportion of times jth word occurred in ith document

Bag of words model:



Bag of Words

n documents/articles with lots of text 

- Can we embed each document into a feature space?



Bag of Words

xi 2 RDith document:

xi,j = proportion of times jth word occurred in ith document

Bag of words model:

Given vectors, run k-means or Gaussian mixture model to find k clusters/topics

n documents/articles with lots of text 

- Can we embed each document into a feature space?



Nonnegative matrix factorization (NMF)

Nonnegative  
Matrix factorization:

Also see latent Dirichlet factorization (LDA)

W 2 Rm⇥d
+ , H 2 Rn⇥d

+

A 2 Rm⇥n

d is number of topics

min kA�WH
T k2F

Ai,j = frequency of jth word in document i



Nonnegative matrix factorization (NMF)

Nonnegative  
Matrix factorization:

Also see latent Dirichlet factorization (LDA)

W 2 Rm⇥d
+ , H 2 Rn⇥d

+

A 2 Rm⇥n

d is number of topics

min kA�WH
T k2F

Ai,j = frequency of jth word in document i

Each column of H represents a cluster of a topic,
Each row W is some weights a combination of topics



TF*IDF

n documents/articles with lots of text 

How to get a feature representation of each article? 

1. For each document d compute the proportion of times 
word t occurs out of all words in d, i.e. term frequency 

2. For each word t in your corpus, compute the proportion of 
documents out of n that the word t occurs, i.e., document frequency

3. Compute score for word t in document d as

TFd,t

DFt

TFd,t log(
1

DFt
)



http://www.ratebeer.com/beer/two-hearted-ale/1502/2/1/

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Two Hearted Ale - Input ~2500 natural language reviews

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood



Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Two Hearted Ale - Weighted Bag of Words: 



Weighted count vector
for the ith beer:

zi 2 R400,000

Cosine distance:

d(zi, zj) = 1� zT
i zj

||zi|| ||zj ||

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Two Hearted Ale - Nearest Neighbors: 
Bear Republic Racer 5 
Avery IPA 
Stone India Pale Ale &#40;IPA&#41; 
Founders Centennial IPA 
Smuttynose IPA  
Anderson Valley Hop Ottin IPA 
AleSmith IPA 
BridgePort IPA 
Boulder Beer Mojo IPA 
Goose Island India Pale Ale 
Great Divide Titan IPA 
New Holland Mad Hatter Ale 
Lagunitas India Pale Ale 
Heavy Seas Loose Cannon Hop3 
Sweetwater IPA

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood



Find an embedding {x1, . . . , xn} ⇢ Rd such that

||xk � xi|| < ||xk � xj || whenever d(zk, zi) < d(zk, zj)

for all 100-nearest neighbors.

(107 constraints, 105 variables)

Solve with hinge loss and stochastic gradient descent.

Could have also used local-linear-embedding,
max-volume-unfolding, kernel-PCA, etc.

(20 minutes on my laptop) (d=2,err=6%) (d=3,err=4%)

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF
Embedding in 
d dimensions

Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling

distance in 400,000
dimensional “word space”



Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions



Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Sanity check: styles 
should cluster together 
and similar styles 
should be close. 

IPA

Pale ale
Brown ale

Porter

Stout

Doppelbock

Belgian dark
Lambic

Wheat

Belgian light
Wit

Light lager

Pilsner

Amber
Blond



Algorithm requires feature representations of the beers {x1, . . . , xn} ⇢ Rd

BeerMapper - Under the Hood

Reviews for  
each beer

Bag of Words  
weighted by  

TF*IDF

Get 100 nearest  
neighbors using  
cosine distance

Non-metric 
multidimensional 

scaling
Embedding in 
d dimensions

Sanity check: styles 
should cluster together 
and similar styles 
should be close. 

IPA

Pale ale
Brown ale

Porter

Stout

Doppelbock

Belgian dark
Lambic

Wheat

Belgian light
Wit

Light lager

Pilsner

Amber
Blond



Sequences and 
Recurrent Neural 
Networks



Time-dependent data

xt 2 R : AAPL stock
price at time t

Prediction model: p(xt+1|xt, xt�1, xt�2, . . . )
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Time-dependent data

xt 2 R : AAPL stock
price at time t

Prediction model: p(xt+1|xt, xt�1, xt�2, . . . )

ht 2 Rd: hidden latent
state of AAPL

ht+1 = g(ht, xt)

Hidden state and g never observed, but learned! 

⇡ p(xt+1|xt, ht+1)

Zhang et al. “Dive into Deep Learning”



Time-dependent data xt 2 R : AAPL stock
price at time t

Prediction model: p(xt+1|xt, xt�1, xt�2, . . . )

ht 2 Rd: hidden latent
state of AAPL

ht+1 = g(ht, xt)

Hidden state and g never observed, but learned! 

⇡ p(xt+1|xt, ht+1)

Explicit:

ht+1 = �(Aht +Bxt)

bxt+1 = Cht+1 +Dxt

X

t

(xt � bxt)
2

Zhang et al. “Dive into Deep Learning”



Time-dependent data

Prediction model: p(xt+1|xt, xt�1, xt�2, . . . )

ht+1 = g(ht, xt)

Hidden state and g never observed, but learned! 

⇡ p(xt+1|xt, ht+1)

Model also works with text!

Zhang et al. “Dive into Deep Learning”



Time-dependent data

Prediction model: p(xt+1|xt, xt�1, xt�2, . . . )

ht+1 = g(ht, xt)

Hidden state and g never observed, but learned! 

⇡ p(xt+1|xt, ht+1)

ot o0 o1 o2
Recurrent Neural Network

Slide: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Variable length sequences

Recurrent Neural Network

Standard RNN

Gated RNN
LSTM

Slide: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

And MORE!
- Transformers
- Attention
- Bi-directional


