
©Kevin Jamieson

Structured Neural Networks

Single'Node'

9'

Sigmoid'(logis1c)'ac1va1on'func1on:' g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

x0 = 1x0 = 1

“bias'unit”'

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775
✓0

✓1

✓2

✓3

Based'on'slide'by'Andrew'Ng'

X Binary
Logistic
Regression

h✓(x) =
1

1 + e�✓Tx

Neural'Network'

11'

Layer'3'
(Output'Layer)'

Layer'1'
(Input'Layer)'

Layer'2'
(Hidden'Layer)'

x0 = 1bias'units' a(2)0

Slide'by'Andrew'Ng'

14'

 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide'by'Andrew'Ng'

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)

Multi-layer Neural Network

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+ 1) = Θ(l)a(l)

a(l+ 1) = g (z(l+ 1))
̂y = a(L+ 1)

…
…

L(y, ̂y) = y log(̂y) + (1 − y)log(1 − ̂y)

5

g(z) = 1
1 + e−z

Binary
Logistic
Regression

Mul1ple'Output'Units:''One@vs@Rest'

17'

Pedestrian' Car' Motorcycle' Truck'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

Slide'by'Andrew'Ng'

Multi-class
Logistic
Regression

Mul1ple'Output'Units:''One@vs@Rest'

•  Given'{(x1,y1), (x2,y2), ..., (xn,yn)}
•  Must'convert'labels'to'1@of@K'representa1on'

–  e.g.,''''''''''''''''''''when'motorcycle,''''''''''''''''''''''when'car,'etc.''
18'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

yi =

2

664

0
1
0
0

3

775yi =

2

664

0
0
1
0

3

775

Based'on'slide'by'Andrew'Ng'

Neural Networks are arbitrary function approximators

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)

Neural Network Architecture

5

The neural network architecture is defined by the number of layers,
and the number of nodes in each layer, but also by allowable edges.

Neural Network Architecture

5

The neural network architecture is defined by the number of layers,
and the number of nodes in each layer, but also by allowable edges.

We say a layer is Fully Connected (FC) if all linear mappings from the
current layer to the next layer are permissible.

a(k+1) = g(⇥a(k)) for any ⇥ 2 Rnk+1⇥nk

A lot of parameters!! n1n2 + n2n3 + · · ·+ nLnL+1

Neural Network Architecture
Objects are often
localized in space so to
find the faces in an
image, not every pixel is
important for classification
—makes sense to drag a
window across an image.

Neural Network Architecture
Objects are often
localized in space so to
find the faces in an
image, not every pixel is
important for classification
—makes sense to drag a
window across an image.

Similarly, to identify
edges or other
local structure, it
makes sense to
only look at local
information

vs.

Neural Network Architecture

vs.

Parameters: n2 3n� 2

a(k+1)a(k) a(k+1)a(k)

a(k+1)
i = g

0

@
n�1X

j=0

⇥i,ja
(k)
j

1

A

2

66664

⇥0,0 ⇥0,1 0 0 0
⇥1,0 ⇥1,1 ⇥1,2 0 0
0 ⇥2,1 ⇥2,2 ⇥2,3 0
0 0 ⇥3,2 ⇥3,3 ⇥3,4

0 0 0 ⇥4,3 ⇥4,4

3

77775

2

66664

⇥0,0 ⇥0,1 ⇥0,2 ⇥0,3 ⇥0,4

⇥1,0 ⇥1,1 ⇥1,2 ⇥1,3 ⇥1,4

⇥2,0 ⇥2,1 ⇥2,2 ⇥2,3 ⇥2,4

⇥3,0 ⇥3,1 ⇥3,2 ⇥3,3 ⇥3,4

⇥4,0 ⇥4,1 ⇥4,2 ⇥4,3 ⇥4,4

3

77775

Neural Network Architecture

vs.

Parameters: n2 3n� 2

Mirror/share local
weights everywhere
(e.g., structure equally
likely to be anywhere
in image)

3

a(k+1)a(k) a(k+1)a(k)

a(k+1)
i = g

0

@
n�1X

j=0

⇥i,ja
(k)
j

1

A a(k+1)
i = g

0

@
m�1X

j=0

✓ja
(k)
i+j

1

A

2

66664

✓1 ✓2 0 0 0
✓0 ✓1 ✓2 0 0
0 ✓0 ✓1 ✓2 0
0 0 ✓0 ✓1 ✓2
0 0 0 ✓0 ✓1

3

77775

2

66664

⇥0,0 ⇥0,1 0 0 0
⇥1,0 ⇥1,1 ⇥1,2 0 0
0 ⇥2,1 ⇥2,2 ⇥2,3 0
0 0 ⇥3,2 ⇥3,3 ⇥3,4

0 0 0 ⇥4,3 ⇥4,4

3

77775

2

66664

⇥0,0 ⇥0,1 ⇥0,2 ⇥0,3 ⇥0,4

⇥1,0 ⇥1,1 ⇥1,2 ⇥1,3 ⇥1,4

⇥2,0 ⇥2,1 ⇥2,2 ⇥2,3 ⇥2,4

⇥3,0 ⇥3,1 ⇥3,2 ⇥3,3 ⇥3,4

⇥4,0 ⇥4,1 ⇥4,2 ⇥4,3 ⇥4,4

3

77775

Neural Network Architecture

Convolution*

* Actually defined as the closely related quantity of “cross-correlation” but the deep learning literature just calls this “convolution”

Fully Connected (FC) Layer Convolutional (CONV) Layer (1 filter)

m=3

is referred to as a “filter”

= g([✓ ⇤ a(k)]i)

✓ = (✓0, . . . , ✓m�1) 2 Rm

a(k+1)
i = g

0

@
m�1X

j=0

✓ja
(k)
i+j

1

Aa(k+1)
i = g

0

@
n�1X

j=0

⇥i,ja
(k)
j

1

A

2

66664

✓1 ✓2 0 0 0
✓0 ✓1 ✓2 0 0
0 ✓0 ✓1 ✓2 0
0 0 ✓0 ✓1 ✓2
0 0 0 ✓0 ✓1

3

77775

2

66664

⇥0,0 ⇥0,1 ⇥0,2 ⇥0,3 ⇥0,4

⇥1,0 ⇥1,1 ⇥1,2 ⇥1,3 ⇥1,4

⇥2,0 ⇥2,1 ⇥2,2 ⇥2,3 ⇥2,4

⇥3,0 ⇥3,1 ⇥3,2 ⇥3,3 ⇥3,4

⇥4,0 ⇥4,1 ⇥4,2 ⇥4,3 ⇥4,4

3

77775

Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2

Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2 1

Output ✓ ⇤ x
1

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j

2d Convolution Layer

Convolution of images (2d convolution)

Image I
Filter K

I ⇤K

Convolution of images
K

Image I

I ⇤K

Convolution of images

filters Hk
convolved image
Hk ⇤X

flatten
into vector

2

64
vec(H1 ⇤X)
vec(H2 ⇤X)

...

3

75

Input image X

3d Convolution

6

6

3

27

27

1

⇥ 2 Rm⇥m⇥r

x 2 Rn⇥n⇥r

(⇥ ⇤ x)s,t =
m�1X

i=0

m�1X

j=0

r�1X

k=0

⇥i,j,kxs+i,t+j

Stacking convolved images

d filters

6

6

3 27

27

⇥ 2 Rm⇥m⇥r

x 2 Rn⇥n⇥r

(⇥ ⇤ x)s,t =
m�1X

i=0

m�1X

j=0

r�1X

k=0

⇥i,j,kxs+i,t+j

Repeat with d filters!

Stacking convolved images

64 filters

6

6

3 27

27

Stacking convolved images

64 filters

6

6

3 27

27

Apply Non-linearity to
the output of each
layer, Here: ReLu
(rectified linear unit)

Other choices: sigmoid, arctan

Pooling

Pooling reduces the
dimension and can be
interpreted as “This filter had
a high response in this
general region”

27x27x64
14x14x64

Pooling Convolution layer

14x14x64

64 filters

6

6

3 27

27

MaxPool with
2x2 filters
and stride 2

Convolve
with 64 6x6x3 filters

Simplest feature pipeline

14x14x64

64 filters

6

6

3 27

27

Convolve
with 64 6x6x3 filters

MaxPool with
2x2 filters
and stride 2

Flatten into a single
vector of size
14*14*64=12544

How do we choose the filters?
- Hand crafted (digital signal processing, c.f. wavelets)
- Learn them (deep learning)

How do we choose all the hyperparameters?

Some hand-created image features

SIFT Spin Image

RIFTHoG

Texton GLOH

Slide from Honglak Lee

Learning Features with Convolutional Networks

14x14x64

6

6

3 27

27

Recall: Convolutional neural
networks (CNN) are just regular
fully connected (FC) neural
networks with some
connections removed.
Train with SGD!

reshape

output layer

poolCONV hidden layer FC hidden layer

Training Convolutional Networks

14x14x64

6

6

3 27

27

reshape

output layer

poolCONV hidden layer FC hidden layer

Real example network: LeNet

Training Convolutional Networks

Real example network: LeNet
Real example network: LeNet

Remarks
• Convolution is a fundamental operation in signal

processing. Instead of hand-engineering the filters (e.g.,
Fourier, Wavelets, etc.) Deep Learning learns the filters
and CONV layers with back-propagation, replacing fully
connected (FC) layers with convolutional (CONV) layers

• Pooling is a dimensionality reduction operation that
summarizes the output of convolving the input with a filter  

• Typically the last few layers are Fully Connected (FC),
with the interpretation that the CONV layers are feature
extractors, preparing input for the final FC layers. Can
replace last layers and retrain on different dataset+task. 

• Just as hard to train as regular neural networks.
• More exotic network architectures for specific tasks

Real networks

Data augmentation?
Batch norm?

RELU leakiness
slope

Learning rate schedule

⌘1
⌘2
⌘3

t1 t2t3
⌘4

Residual Network of
[HeZhangRenSun’15]

n1 layers of f1 filters

Reduce spatial
dimension

n0 layers of f0 filters

n2 layers of f2 filters

n3 layers of f3 filters

Reduce spatial
dimension

Reduce spatial
dimension

batchsizeModern networks have
dozens of parameters to tune.

