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Structured Neural Networks 
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 ai
(j) = “ac1va1on”'of'unit'i''in'layer'j 

Θ(j) = weight'matrix'stores'parameters'
from'layer'j to'layer'j +'1 

If'network'has'sj'units'in'layer'j and(sj+1 units'in'layer'j+1,'
then'Θ(j) has'dimension'sj+1 × (sj+1)'''''''''''''''''''''''''''''''.'
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Multi-layer Neural Network

a(1) = x
z(2) = Θ(1)a(1)

a(2) = g (z(2))

z(l+ 1) = Θ(l)a(l)

a(l+ 1) = g (z(l+ 1))
̂y = a(L+ 1)

…
…

L(y, ̂y ) = y log( ̂y ) + (1 − y)log(1 − ̂y )
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Pedestrian' Car' Motorcycle' Truck'
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Mul1ple'Output'Units:''One@vs@Rest'

•  Given'{(x1,y1), (x2,y2), ..., (xn,yn)} 
•  Must'convert'labels'to'1@of@K'representa1on'

–  e.g.,''''''''''''''''''''when'motorcycle,''''''''''''''''''''''when'car,'etc.''
18'

h⇥(x) 2 RK

when'pedestrian''''''''''''when'car''''''''''''''when'motorcycle'''''''''''''when'truck'

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We'want:'

yi =

2

664

0
1
0
0

3

775yi =

2

664

0
0
1
0

3

775

Based'on'slide'by'Andrew'Ng'



Neural Networks are arbitrary function approximators

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)



Neural Network Architecture
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The neural network architecture is defined by the number of layers, 
and the number of nodes in each layer, but also by allowable edges. 



Neural Network Architecture

5

The neural network architecture is defined by the number of layers, 
and the number of nodes in each layer, but also by allowable edges. 

We say a layer is Fully Connected (FC) if all linear mappings from the 
current layer to the next layer are permissible. 

a(k+1) = g(⇥a(k)) for any ⇥ 2 Rnk+1⇥nk

A lot of parameters!! n1n2 + n2n3 + · · ·+ nLnL+1



Neural Network Architecture
Objects are often 
localized in space so to 
find the faces in an 
image, not every pixel is 
important for classification
—makes sense to drag a 
window across an image.



Neural Network Architecture
Objects are often 
localized in space so to 
find the faces in an 
image, not every pixel is 
important for classification
—makes sense to drag a 
window across an image.

Similarly, to identify 
edges or other 
local structure, it 
makes sense to 
only look at local 
information 

vs.



Neural Network Architecture
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Neural Network Architecture
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Parameters: n2 3n� 2
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likely to be anywhere 
in image) 
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Neural Network Architecture

Convolution*

* Actually defined as the closely related quantity of “cross-correlation” but the deep learning literature just calls this “convolution”

Fully Connected (FC) Layer Convolutional (CONV) Layer (1 filter)

m=3

is referred to as a “filter”
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Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j



Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2

Output ✓ ⇤ x

(✓ ⇤ x)i =
m�1X

j=0

✓jxi+j



Example (1d convolution)
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Example (1d convolution)

Filter ✓ 2 Rm

Input x 2 Rn

2 1
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2d Convolution Layer



Convolution of images (2d convolution)

Image I
Filter K

I ⇤K



Convolution of images
K

Image I

I ⇤K



Convolution of images

filters Hk
convolved image
Hk ⇤X

flatten
into vector

2

64
vec(H1 ⇤X)
vec(H2 ⇤X)

...

3

75

Input image X



3d Convolution
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Stacking convolved images

d filters
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Repeat with d filters!



Stacking convolved images

64 filters
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Stacking convolved images

64 filters

6

6

3 27

27

Apply Non-linearity to 
the output of each 
layer, Here: ReLu 
(rectified linear unit)

Other choices: sigmoid, arctan



Pooling

Pooling reduces the 
dimension and can be 
interpreted as “This filter had 
a high response in this 
general region”

27x27x64
14x14x64



Pooling Convolution layer

14x14x64

64 filters

6

6

3 27

27

MaxPool with 
2x2 filters 
and stride 2

Convolve
with 64 6x6x3 filters



Simplest feature pipeline

14x14x64

64 filters

6

6

3 27

27

Convolve
with 64 6x6x3 filters

MaxPool with 
2x2 filters 
and stride 2

Flatten into a single
vector of size 
14*14*64=12544

How do we choose the filters?
- Hand crafted (digital signal processing, c.f. wavelets)
- Learn them (deep learning)

How do we choose all the hyperparameters?



Some hand-created image features

SIFT Spin Image

RIFTHoG

Texton GLOH

Slide from Honglak Lee



Learning Features with Convolutional Networks

14x14x64

6

6

3 27

27

Recall: Convolutional neural 
networks (CNN) are just regular 
fully connected (FC) neural 
networks with some 
connections removed. 
Train with SGD!

reshape

output layer

poolCONV hidden layer FC hidden layer



Training Convolutional Networks

14x14x64

6

6

3 27

27

reshape

output layer

poolCONV hidden layer FC hidden layer

Real example network: LeNet



Training Convolutional Networks

Real example network: LeNet
Real example network: LeNet



Remarks
• Convolution is a fundamental operation in signal 

processing. Instead of hand-engineering the filters (e.g., 
Fourier, Wavelets, etc.) Deep Learning learns the filters 
and CONV layers with back-propagation, replacing fully 
connected (FC) layers with convolutional (CONV) layers 

• Pooling is a dimensionality reduction operation that 
summarizes the output of convolving the input with a filter  

• Typically the last few layers are Fully Connected (FC), 
with the interpretation that the CONV layers are feature 
extractors, preparing input for the final FC layers. Can 
replace last layers and retrain on different dataset+task. 

• Just as hard to train as regular neural networks. 
• More exotic network architectures for specific tasks 



Real networks

Data augmentation?
Batch norm?

RELU leakiness  
slope

Learning rate schedule

⌘1
⌘2
⌘3

t1 t2t3
⌘4

Residual Network of  
[HeZhangRenSun’15]

n1 layers of f1 filters

Reduce spatial 
dimension

n0 layers of f0 filters

n2 layers of f2 filters

n3 layers of f3 filters

Reduce spatial 
dimension

Reduce spatial 
dimension

batchsizeModern networks have 
dozens of parameters to tune.


