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Slide by Andrew Ng

Neural Network

Layer 1

(Input Layer)

Layer 2 Layer 3
(Hidden Layer) (Output Layer)
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OV = weight matrix stores parameters
from layerj to layerj + 1

e al) = “activation” of unit/ in layer
JaY ‘2>a53)_>h9(x) - : :

a\? = g(8\)xo + O\Va1 + 0 zs + 01 3)
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Multi-layer Neural Network

a) = x
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a® = g (z®)

Z(l+1) — D40
al+h) = g (Z(z+1))

L(y,y) =ylog(y) + (1 —y)log(l — )
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Multiple Output Units: One-vs-Rest
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Multiple Output Units: One-vs-Rest

he (X) c R
We want:
[ 1 ] [ 0 | [ 0 ] [ 0 ]
0 1 0 0
heo(x) ~ 0 ho(x) ~ 0 he(x) ~ 1 he(x) ~ 0
0 | 0 | 0 | 1]
when pedestrian when car when motorcycle when truck

* Given{(Xy,¥4), (X2,¥2), -y (XY
* Must convert labels to 1-of-K representation
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Neural Networks are arbitrary function approximators

Theorem 10 (Two-Layer Networks are Universal Function Approx-
imators). Let F be a continuous function on a bounded subset of D-
dimensional space. Then there exists a two-layer neural network F with a

finite number of hidden units that approximate F arbitrarily well. Namely,
for all x in the domain of F, |F(x) — F(x)| <.

Cybenko, Hornik (theorem reproduced from CIML, Ch. 10)



Neural Network Architecture

The neural network architecture is defined by the number of layers,
and the number of nodes in each layer, but also by allowable edges.
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Neural Network Architecture

The neural network architecture is defined by the number of layers,
and the number of nodes in each layer, but also by allowable edges.
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We say a layer is Fully Connected (FC) if all linear mappings from the
current layer to the next layer are permissible.

al**tl) = g(@al®)) for any © € R7+1x7
A lot of parameters!! 101N + NoNg + -+ + NN 41



Neural Network Architecture

Obijects are often
localized in space so to
find the faces in an
Image, not every pixel is
important for classification
—makes sense to drag a
window across an image.




Neural Network Architecture

Obijects are often
localized in space so to
find the faces in an
Image, not every pixel is
important for classification
—makes sense to drag a
window across an image.

Similarly, to identify
edges or other
local structure, it
makes sense to
only look at local
information
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Neural Network Architecture

VS.
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Neural Network Architecture

VS.
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Mirror/share local
weights everywhere
(e.g., structure equally
likely to be anywhere

in image)
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Neural Network Architecture

Fully Connected (FC) Layer Convolutional (CONV) Layer (1 filter)
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Convolution*

0= (0g,...,0m_1) € R" isreferred to as a “filter”

* Actually defined as the closely related quantity of “cross-correlation” but the deep learning literature just calls this “convolution”



Example (1d convolution)
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Example (1d convolution)
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Example (1d convolution)
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Example (1d convolution)
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2d Convolution Layer

# Example: 200x200 image
» Fully-connected, 400,000 hidden units = 16 billion parameters

» Locally-connected, 400,000 hidden units 10x10 fields = 40
million params

» Local connections capture local dependencies




Convolution of images (2d convolution)

(I *K)( ZZIz+my+nK(mn) :;1:2 1(0]1
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Convolution of images

Operation
(I K)(i,5) = Y > I(i+m,j+n)K(m,n)
m n
Image [
- . Edge detection
e
Sharpen
Box blur

(normalized)

Gaussian blur

(approximation)

Filter
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Convolution of images

flatten
~._Into vector

vec(Hy * X))
vec(Hs x X)

convolved image

filters Hy .+ X
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3d Convolution
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Stacking convolved images

Repeat with d filters!
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Stacking convolved images
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Stacking convolved images
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3 27

64 filters

Apply Non-linearity to
the output of each
layer, Here: RelLu
(rectified linear unit)

= TR
., white )positﬂ/eLvaIues

Other choices: sigmoid, arctan



Pooling

Single depth slice

Pooling reduces the (111124 o
dimension and can be B Cdetide2
interpreted as “This filter had 3| > AR .
a high response in this
general region” 1|2 3 4
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Pooling Convolution layer

2 14x14x64
32

—={0000}
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64 filters MaxPool with

2x2 filters
with 64 6x6x3 filters and stride 2

Convolve



Simplest feature pipeline

- 14x14
32

6, \
[ —
6@._/-—>© olelel
3 . | — Flatten Into a single
/32 vector of size
3 14*14*64=12544
64 filters MaxPool with
Convolve 2x2 filters
with 64 6x6x3 filters and stride 2

How do we choose all the hyperparameters?

How do we choose the filters?

- Hand crafted (digital signal processing, c.f. wavelets)
- Learn them (deep learning)



Some hand-created image features
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Learning Features with Convolutional Networks

reshape FC hidden layer

CONYV hidden layer
pool
/ 27 14/
32
n@;>oocoo \output layer
° \

27

N
|
IR

Recall: Convolutional neural
networks (CNN) are just regular
fully connected (FC) neural
networks with some
connections removed.

Train with SGD! ooy
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output layer
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Training Convolutional Networks

reshape :
CONV hidden layer FC hidden layer
pool
/ Z 14x14
32 Vg
e@’/—>0 OO0 output layer
27
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Real example network: LeNet

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
+RelU +RelU Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)




Real example network:

Convolution
+ RelU

LeNet

Pooling

Convolution

Pooling

Output
Layer

FC
Layer 2
FC
Layer 1

Pooling
Layer 2

Convolution
Layer 2

Pooling
Layer 1

Convolution
Layer 1

Input Layer

Fully Fully
Connected Connected

Output Predictions

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)




Remarks

 Convolution is a fundamental operation in signal
processing. Instead of hand-engineering the filters (e.g.,
Fourier, Wavelets, etc.) Deep Learning learns the filters
and CONYV layers with back-propagation, replacing fully
connected (FC) layers with convolutional (CONV) layers

* Pooling is a dimensionality reduction operation that
summarizes the output of convolving the input with a filter

- Typically the last few layers are Fully Connected (FC),
with the interpretation that the CONV layers are feature
extractors, preparing input for the final FC layers. Can
replace last layers and retrain on different dataset+task.

- Just as hard to train as regular neural networks.
- More exotic network architectures for specific tasks



Real networks

Modern networks have
dozens of parameters to tune.

Data augmentation?
Batch norm?

RELU leakiness
slope

batchsize

k
R e g [

Reduce spatial
dimension

Reduce spatial
dimension

Learning rate schedule

m

12
0

Reduce spatial
dimension
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Residual Network of
[HeZhangRenSun’15]
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