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PCA in one dimension, 2 equivalent views

Goal: find a k < d-dimensional representation of X
For k =1:

Choose 7 € R%, ||v|] = 1
to minimize

1 mn
— g dist(x;,line defined by v)
n

i=1

°
‘/M:ximize variance Minimize residuals
(squared distance) (squared distance)
of red dots in in this direction

this direction

Two equivalent views of principal component analysis.



PCA: a high-fidelity linear projection
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Eigenvalue decomposition

V, are the first g eigenvectors of X

Minimize reconstruction error and capture the most variance in your data.



PCA: a high-fidelity linear projection

Given z; € R? and some g < d consider N
q uid
1101

q .

N
- —_ T —— 2
min E_l [(zi —Z) — VoV, (z: — Z)||°.

where V, = [v1,v,...,vu,] isorthonormal:
T —
V., V,=1,

EVq are the first ¢ eigenvectors of X

V, are the first q principal components

— =

Principal Component Analysis (PCA) projects (X — 1z") down onto V,
(X —1z7)V, = U,diag(dy, ..., d,) Uy, =1,




PCA: finding the principal components




How do we compute the principal components?

1. Power iteration
2. Solving for a singular value decomposition (SVD)



Singular Value Decomposition (SVD)

Theorem (SVD): Let A € R™*" with rank r < min{m, n}. Then/A = USV7'
where S € R"™" is diagonal with positive entries, Uulu=1 VIV=T.
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Singular Value Decomposition (SVD)

Theorem (SVD): Let A € R™*" with rank r < min{m,n}. Then A = USV?T
where S € R"*" is diagonal with positive entries, UTU = [, VIV =T.

ATA:(VST ) \,\SV

- L J =
, o
A Avy; = Vc ‘D\,i V(. ‘A = Lv-r
— - -

N g ¢
AATu = W d¢ = 1
= = | T
N = (s V') LVS‘ (AT\ A A M‘%
A D whouw' W
< il T



Singular Value Decomposition (SVD)

Theorem (SVD): Let A € R™*" with rank r < min{m,n}. Then A = USV?T
where S € R"*" is diagonal with positive entries, UTU =1, VIV = TI.

AT Av; = S} v

AA v = S7

V are the first r eigenvectors of AT A with eigenvalues diag(S)
U are the first r eigenvectors of AAT with eigenvalues diag(S)



Computational complexity of SVD

Theorem (SVD): Let A € R™*" with rank r < min{m,n}. Then A = USV?T
where S € R"*" is diagonal with positive entries, UTU =1, VIV = TI.

at most r singular values

irrelevant | n-m | last columns of U
Computing the remaining economy-sized SVD takes time O(n mé: >
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PCA on MNIST

Second Principal Component

V, are the first g eigenvectors of ¥ andSVD X — 1z1 =usv?t

Handwritten 3’s, 16x16 pixel image so that z; € R?°°
FO) = Z+ v+ dovy

_ 3+)\1-—.es;. -+)\2-@.

(X —1z2")Vy = UyS, € R™*?

diag(S)

8
2 o : . Real Trace
i . . $ o . Randomized Trace
0 . ’ [ .
- . , . > :
PRR S . . . - 3 3 3 g ‘1
. o o - % e e |
o U .o, I o G -.0
i i e S 3 3 \
L ARY) % AR R : - ° 1. . . - T T
08 el P B L T - . 5 3 3 3 5 0 50 100 150 200 250
:-:. ¥ e s % ) L . Dimension
R TRt PRar i ‘
ERRIEER [« \ ) ., ] FIGURE 14.24. The 256 singular values for the digitized threes, compared to
I .0 those for a randomized version of the data (each column of X was scrambled).
1 : ) . .0.. \. ’ | 3 3 3 3 3

First Principal Component



Linear projections

Given z; € R? and some g < d consider N
q uid
1101

N
min Y ||(z; — %) — Vqu(mi —z)||2.
i=1

v, “
where V, = [v1,v,...,vu,] isorthonormal:
ViV, =1,
V, are the first g eigenvectors of X N
=) (z;—2)(x; —2)7

V, are the first q principal components

Principal Component Analysis (PCA) projects (X — 1z") down onto V,
(X —1z7)V, = U,diag(dy, ..., d,) Uy, =1,

"Singular Value Decomposition defined as

X —1z7 =Usv?




SVD and PCA

V, are the first g eigenvectors of ¥ andSVD X — 1z1 =usv?t
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How do we compute the principal components?

1. Power iteration
2. Solving for a singular value decomposition (SVD)



Power method - one vector at a time
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Power method - one vector found iteratively
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Power method - one vector found iteratively
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Power method - analysis
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An application: Matrix completion

Given historical data on how users rated movies in past: -

17,700 movies, 480,189 users, 99,072,112 ratings (Sparsity: 1.2%)

—

Predict how the same users will rate movies in the future (for S1 million prize)

_ N\o\l\.es

Alice | 1 ? ? 4 ? @
Bob| 2 | 2|5 | 2] 2| \Mﬁ
Carol | 7 ? 4 5 ?
Dave | 5 ? ? ? 4 | @ ﬂ




Matrix completion
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n movies, m users, [S/ ratings
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Matrix completion %W‘
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PCA and SVD take-aways

PCA finds a d-dimensional representation with:
Highest variance in any d-dimensional space
Lowest reconstruction error
spanned by the top d eigenvectors of covariance matrix

How to find the top d eigenvectors?
SVD: (X-1pn):=A=USVT
V are the eigenvectors of ATA

U are the eigenvectors of AAT
Power method

This is one way to represent data in lower dimensions: there are others with other properties
E.g., that approximately maintain pairwise distances



Expectation
Maximization: an
algorithmic template

UNIVERSITY of WASHINGTON



Recall Lloyd’s algorithm

Ask user how many
clusters they’d like. (e.g.
k=5)

Randomly guess k cluster
Center locations

Each datapoint finds out
which Center it is closest
to.

Each Center finds the
centroid of the points it
owns...

...and jumps there

...Repeat until
terminated!

m

F(p,C) = > llucg — =57

j=1

©Kevin Jamieson 2018



m

Recall Lloyd’s algorithm F(p,C) = Y lluc(y) — ll°

j=1

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it is closest () — argmin ||u; — xj||2
to. i

4. Each Center finds the (t+1) . 5
centroid of the points it Hi argmin >l =yl
OWnS... §:C(4)=1

5. ..and jumps there

6. ..Repeat until
terminated!

©Kevin Jamieson 2018



Recall Lloyd’s algorithm

Ask user how many
clusters they’d like. (e.g.
k=5)

Randomly guess k cluster
Center locations

Each datapoint finds out
which Center it is closest
to.

Each Center finds the
centroid of the points it
owns...

...and jumps there

...Repeat until
terminated!

m

F(p,C) =Y llnogy — =17

j=1

Fixing centers,
assign points to
“most probable” cluster

Fixing assignment,
compute “most likely” center

©Kevin Jamieson 2018



m

Recall Lloyd’s algorithm F(p,C) = Y lluc(y) — ll°

J=1

1. Ask user how many
clusters they’d like. (e.g.

k=5)
2. Randomly guess k cluster Fixing centers
Center locations assign points to
3. Each datapoint finds out “most probable” cluster
which Center it is closest () — argmin ||u; — xj||2
to. )

4. Each Center finds the (t+1) . 5
centroid of the points it Hi argmin >l =yl
oWns... J:C@G)=i

Fixing assighnment,

5. ..andjumps there compute “most likely” center

6. ..Repeat until
terminated!

©Kevin Jamieson 2018



m

Recall Lloyd’s algorithm F(p,C) = Y lluc(yy — ll?

j=1

Ask user how many
clusters they’d like. (e.g.

k=5)
Randomly guess k cluster -\ Fixing centers,
Center locations [ Expectatiﬂ assign points to

Each datapoint finds out “most probable” cluster

which Center it is closest
to.

Each Center finds the
centroid of the points it

owns...
_ . Fixing assighnment,
...and jumps there Maximization p .
compute “most likely” center
...Repeat until

terminated!

©Kevin Jamieson 2018



m

Recall Lloyd’s algorithm F(p,C) = Y lluc(y) — ll°

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it is closest
to.

4. Each Center finds the
centroid of the points it
owns...

5. ..and jumps there

6. ..Repeat until
terminated!

j=1

Fixing centers,
assign points to
“most probable” cluster

Expectation:

C® () — argmin ||p; — =2
1

t+1 .
MZ("' ) — arg min Sl —zjl)?
Ko 3 .
§:C(5)=1
Fixing assighnment,

Maximization: b o
compute “most likely” center

©Kevin Jamieson 2018



What likelihood function?

There are k truncated Gaussians
each generating data

—

Fixing centers,
assign points to
“most probable” cluster

Expectation:

Fixing assighnment,

Maximization: b o
compute “most likely” center

©Kevin Jamieson 2018



What likelihood function?

There are k truncated Gaussians
each generating data

Fixing centers,
assign points to
“most probable” cluster

Expectation:
CW () — argmin||p; — a;|?

t+1 .
pT —argmin Y [l - a2

j:C()=1
Fixing assighnment,

Maximization: b o
compute “most likely” center

©Kevin Jamieson 2018



The Expectation Maximization template

Expectation:

Fix parameters,
estimate unobserved
data

Maximization:
Fix unobserved data,
find MLE for parameters

Fixing centers,
assign points to
“most probable” cluster

Expectation:

Fixing assignment,

Maximization: b o
compute “most likely” center

©Kevin Jamieson 2018



The Expectation Maximization template

Expectation:

Fix parameters,
estimate unobserved
data

Maximization:
Fix unobserved data,
find MLE for parameters

Fixing centers,
assign points to
“most probable” cluster

Expectation:
CW () — argmin||p; — a;|?

t+1 .
pT —argmin Y [l - a2

j:C()=1
Fixing assignment,

Maximization: b o
compute “most likely” center

©Kevin Jamieson 2018



Why use this template?

Expectation:

Fix parameters,
estimate unobserved
data

Maximization:
Fix unobserved data,
find MLE for parameters

Usually, the joint optimization problem is hard
to solve (e.g., finding the global optimum to k-means)

©Kevin Jamieson 2018



