Principal Component Analysis

UNIVERSITY of WASHINGTON

©2018 Kevin Jamieson

PCA in one dimension, 2 equivalent views

Goal: find a k < d-dimensional representation of X For k = 1:

> Choose $\vec{v} \in \mathbb{R}^d$, ||v|| = 1to minimize $\frac{1}{n} \sum_{i=1}^n dist(x_i, \text{line defined by } \vec{v})$

PCA: a high-fidelity linear projection

Eigenvalue decomposition

 ${f V}_q$ are the first q eigenvectors of Σ Minimize reconstruction error and capture the most variance in your data.

PCA: a high-fidelity linear projection

Given $x_i \in \mathbb{R}^d$ and some q < d consider

$$\min_{\mathbf{V}_q} \sum_{i=1}^N ||(x_i - \bar{x}) - \mathbf{V}_q \mathbf{V}_q^T (x_i - \bar{x})||^2.$$

where $\mathbf{V}_q = [v_1, v_2, \dots, v_q]$ is orthonormal: $\mathbf{V}_q^T \mathbf{V}_q = I_q$

 $\mathbf{V}_q \text{ are the first } q \text{ eigenvectors of } \Sigma$ $\mathbf{V}_q \text{ are the first } q \text{ principal components}$

$$\Sigma := \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T$$

Principal Component Analysis (PCA) projects $(\mathbf{X} - \mathbf{1}\bar{x}^T)$ down onto \mathbf{V}_q $(\mathbf{X} - \mathbf{1}\bar{x}^T)\mathbf{V}_q = \mathbf{U}_q \operatorname{diag}(d_1, \dots, d_q)$ $\mathbf{U}_q^T \mathbf{U}_q = I_q$

PCA: finding the principal components

How do we compute the principal components?

1. Power iteration

2. Solving for a singular value decomposition (SVD)

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$. Then $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^T \mathbf{U} = I$, $\mathbf{V}^T \mathbf{V} = I$. $A^{T}A = (VS^{T}u^{T})V$ $\mathbf{A}^T \mathbf{A} v_i = \mathbf{v}_i \, \mathfrak{P}_{i,i}$ FVi Sii ATAV. $AA^{T}u_{i} = u_{i} S_{i} I_{i} I_{i} I_{i}$ $AN^{T} - (u_{i} V^{T}) (VS^{T} U^{T})$

Singular Value Decomposition (SVD)

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$. Then $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^T\mathbf{U} = I$, $\mathbf{V}^T\mathbf{V} = I$.

$$\mathbf{A}^T \mathbf{A} v_i = \mathbf{S}_{i,i}^2 v_i$$

$$\mathbf{A}\mathbf{A}^T u_i = \ \mathbf{S}_{i,i}^2 u_i$$

V are the first r eigenvectors of $\mathbf{A}^T \mathbf{A}$ with eigenvalues diag(**S**) **U** are the first r eigenvectors of $\mathbf{A}\mathbf{A}^T$ with eigenvalues diag(**S**)

Computational complexity of SVD

Theorem (SVD): Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $r \leq \min\{m, n\}$. Then $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ where $\mathbf{S} \in \mathbb{R}^{r \times r}$ is diagonal with positive entries, $\mathbf{U}^T\mathbf{U} = I$, $\mathbf{V}^T\mathbf{V} = I$.

at most r singular values irrelevant | n - m | last columns of U Computing the remaining economy-sized SVD takes time O(n mr)

This is L of k!

PCA on MNIST

 \mathbf{V}_q are the first q eigenvectors of Σ and SVD $\mathbf{X} - \mathbf{1}\bar{x}^T = \mathbf{U}\mathbf{S}\mathbf{V}^T$

Handwritten 3's, 16x16 pixel image so that $x_i \in \mathbb{R}^{256}$

Linear projections

Given $x_i \in \mathbb{R}^d$ and some q < d consider

$$\min_{\mathbf{V}_q}\sum_{i=1}^N ||(x_i-ar{x})-\mathbf{V}_q\mathbf{V}_q^T(x_i-ar{x})||^2.$$

where $\mathbf{V}_q = [v_1, v_2, \dots, v_q]$ is orthonormal: $\mathbf{V}_q^T \mathbf{V}_q = I_q$

 \mathbf{V}_q are the first q eigenvectors of Σ \mathbf{V}_q are the first q principal components

$$\Sigma := \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T$$

Principal Component Analysis (PCA) projects $(\mathbf{X} - \mathbf{1}\bar{x}^T)$ down onto \mathbf{V}_q $(\mathbf{X} - \mathbf{1}\bar{x}^T)\mathbf{V}_q = \mathbf{U}_q \operatorname{diag}(d_1, \dots, d_q)$ $\mathbf{U}_q^T \mathbf{U}_q = I_q$ Singular Value Decomposition defined as

$$\mathbf{X} - \mathbf{1}\bar{x}^T = \mathbf{U}\mathbf{S}\mathbf{V}^T$$

SVD and **PCA**

 \mathbf{V}_q are the first q eigenvectors of Σ and SVD $\mathbf{X} - \mathbf{1}\bar{x}^T = \mathbf{U}\mathbf{S}\mathbf{V}^T$

How do we compute the principal components?

1. Power iteration

2. Solving for a singular value decomposition (SVD)

Power method - one vector at a time

$$\Sigma := \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T$$

$$v_* = \arg\max_{v} v^T \Sigma v$$

Power method - one vector found iteratively

Power method - one vector found iteratively

Power method - analysis

An application: Matrix completion

Given historical data on how users rated movies in past:

17,700 movies, 480,189 users, 99,072,112 ratings

Predict how the same users will rate movies in the future (for \$1 million prize)

NETFLIX

(Sparsity: 1.2%)

PCA and SVD take-aways

PCA finds a d-dimensional representation with: Highest variance in any d-dimensional space Lowest reconstruction error spanned by the top d eigenvectors of covariance matrix

How to find the top d eigenvectors?

SVD: $(X - I \mu) := A = U S V^T$

V are the eigenvectors of A^TA U are the eigenvectors of AA^T Power method

This is one way to represent data in lower dimensions: there are others with other properties E.g., that approximately maintain pairwise distances

Expectation Maximization: an algorithmic template

UNIVERSITY of WASHINGTON

©2018 Kevin Jamieson

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it is closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it is closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

$$C^{(t)}(j) \leftarrow \arg\min_i ||\mu_i - x_j||^2$$

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu - x_j||^2$$

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it is closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

 $F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$

Fixing centers, assign points to "most probable" cluster

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it is closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

Fixing centers, assign points to "most probable" cluster

$$C^{(t)}(j) \leftarrow \arg\min_i ||\mu_i - x_j||^2$$

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu - x_j||^2$$

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it is closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

Fixing centers, assign points to "most probable" cluster

 $F(\mu, C) = \sum_{i=1}^{n} ||\mu_{C(j)} - x_j||^2$

Maximization:

©Kevin Jamieson 2018

Recall Lloyd's algorithm

- Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- Each datapoint finds out which Center it is closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

Expectation:Fixing centers,assign points to"most probable" cluster

$$C^{(t)}(j) \leftarrow \arg\min_i ||\mu_i - x_j||^2$$

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu - x_j||^2$$

Maximization:

 $F(\mu, C) = \sum_{i=1}^{n} ||\mu_{C(j)} - x_j||^2$

What likelihood function?

Expectation:Fixing centers,assign points to
"most probable" cluster

Maximization: Fixing assignment, compute "most likely" center

©Kevin Jamieson 2018

What likelihood function?

There are k truncated Gaussians each generating data

 $C^{(t)}(j) \leftarrow \arg\min_i ||\mu_i - x_j||^2$

Fixing centers, assign points to "most probable" cluster

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu - x_j||^2$$

Maximization:

The Expectation Maximization template

Expectation:

Fix parameters, estimate unobserved data

Maximization:

Fix unobserved data, find MLE for parameters

Expectation:

Fixing centers, assign points to "most probable" cluster

Maximization:

Fixing assignment, compute "most likely" center

©Kevin Jamieson 2018

The Expectation Maximization template

Expectation:

Fix parameters, estimate unobserved data

Maximization:

Fix unobserved data, find MLE for parameters

Expectation: Fixing centers, assign points to "most probable" cluster $C^{(t)}(j) \leftarrow \arg\min_{i} ||\mu_i - x_j||^2$

$$\mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C(j)=i} ||\mu - x_j||^2$$

Maximization:

Why use this template?

Expectation:

Fix parameters, estimate unobserved data

Maximization:

Fix unobserved data, find MLE for parameters

Usually, the joint optimization problem is hard to solve (e.g., finding the global optimum to k-means)