
©2018 Kevin Jamieson

Principal Component
Analysis

PCA in one dimension, 2 equivalent views

Goal: find a k < d-dimensional representation of X
For k = 1:

Choose ~v 2 Rd, ||v|| = 1
to minimize

1

n

nX

i=1

dist(xi, line defined by ~v)
<latexit sha1_base64="+i3dxRGTJXV4HbXOGyUrg0qjVuk=">AAACgHicbVHbatwwEJXdW+retsljX0Q3hS1sN/a20BAIBPLSx7R0k8DKMbI8zopYkpHkJVutv6P/1bd+TKHyxtA26YDQ4cwcZuZMXlfc2Dj+GYT37j94+GjrcfTk6bPnLwYvt0+NajSDGVOV0uc5NVBxCTPLbQXntQYq8grO8qvjLn+2BG24kl/tqoZU0EvJS86o9VQ2+E6k4rIAafHxQikDeJcsgblliwmXmAhqF3nuvrQXxRiv18v1Gh/iZJeQ6I/QKiy45IJ/AxyROSk1ZS5pnWyJaUTm+GHSXkhc+G1G1xkfY2Lh2mrhuqFxAaX/CpyvcNu3fkvSbDCMJ/Em8F2Q9GCI+jjJBj9IoVgj/ECsosbMk7i2qaPaclZBG5HGQE3ZFb2EuYeSCjCp2xjY4jeeKXCptH9+oQ37t8JRYcxK5L6yM8TcznXk/3Lzxpb7qeOybixIdtOobKrOsu4a3hMNzFYrDyjT3M+K2YJ6/6y/WeRNSG6vfBecTifJ+8n083R49KG3Ywu9Qq/RCCXoIzpCn9AJmiGGfgXDYBy8C8NwFO6FyU1pGPSaHfRPhAe/Aeq1whM=</latexit>

NX

i=1

||(xi � x̄)�VqV
T
q (xi � x̄)||22

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T

min
Vq

NX

i=1

||(xi � x̄)�VqV
T
q (xi � x̄)||22 = min

Vq

Tr(⌃)� Tr(VT
q ⌃Vq)

VT
q Vq = Iq

Eigenvalue decomposition

Vq are the first q eigenvectors of ⌃

Minimize reconstruction error and capture the most variance in your data.

PCA: a high-fidelity linear projection

÷→
orthonormal

l
-

[

where is orthonormal:

Given xi 2 Rd and some q < d consider

Vq are the first q eigenvectors of ⌃

Vq = [v1, v2, . . . , vq]

VT
q Vq = Iq

UT
q Uq = Iq

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T
Vq are the first q principal components

Principal Component Analysis (PCA) projects (X� 1x̄T) down onto Vq

(X� 1x̄T)Vq = Uqdiag(d1, . . . , dq)

PCA: a high-fidelity linear projection

[

/
- -

PCA: finding the principal components

→ d. →
DD

→ mxm

How do we compute the principal components?

1. Power iteration
2. Solving for a singular value decomposition (SVD)

Singular Value Decomposition (SVD)

Theorem (SVD): LetA 2 Rm⇥n with rank r min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.
-
I

i⇒*÷÷:

Singular Value Decomposition (SVD)

Theorem (SVD): LetA 2 Rm⇥n with rank r min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

ATAvi =

AATui =

-

-

ATA -
- (vstu) usvt
-

f
TI :=D

-
Vidi ;

-visitsvpvtl-ATAvi-VDVT.yv-YDi.ci
- aisin

AAT -- (usvi) (Vstut) AATU
-D E UDUTWU I

= UD ht = UD

Singular Value Decomposition (SVD)

Theorem (SVD): LetA 2 Rm⇥n with rank r min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

ATAvi =

AATui =

S2
i,ivi

S2
i,iui

V are the first r eigenvectors of ATA with eigenvalues diag(S)
U are the first r eigenvectors of AAT with eigenvalues diag(S)

Computational complexity of SVD

Theorem (SVD): LetA 2 Rm⇥n with rank r min{m,n}. ThenA = USVT

where S 2 Rr⇥r is diagonal with positive entries, UTU = I, VTV = I.

at most r singular values
irrelevant | n - m | last columns of U
Computing the remaining economy-sized SVD takes time O(n m r) -0

This is L of k !

PCA on MNIST

Vq are the first q eigenvectors of ⌃ X� 1x̄T = USVTand SVD

Handwritten 3’s, 16x16 pixel image so that xi 2 R256

(X� 1x̄T)V2 = U2S2 2 Rn⇥2

diag(S)

- - -

Linear projections

where is orthonormal:

Given xi 2 Rd and some q < d consider

Vq are the first q eigenvectors of ⌃

Vq = [v1, v2, . . . , vq]

VT
q Vq = Iq

UT
q Uq = Iq

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T

X� 1x̄T = USVT

Singular Value Decomposition defined as

Vq are the first q principal components

Principal Component Analysis (PCA) projects (X� 1x̄T) down onto Vq

(X� 1x̄T)Vq = Uqdiag(d1, . . . , dq)

F-

SVD and PCA

Vq are the first q eigenvectors of ⌃ X� 1x̄T = USVTand SVD

X� 1x̄T
U1

U2

How do we compute the principal components?

1. Power iteration
2. Solving for a singular value decomposition (SVD)

Power method - one vector at a time

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T v⇤ = argmax
v

vT⌃v⇒

Power method - one vector found iteratively

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T v⇤ = argmax
v

vT⌃v

zt+1 =
⌃zt

k⌃ztk2
z0 ⇠ N (0, I) Iterate:¥7.0
1¥

⇐ 4¥"

Power method - one vector found iteratively

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T v⇤ = argmax
v

vT⌃v

zt+1 =
⌃zt

k⌃ztk2
z0 ⇠ N (0, I) Iterate:

⌃ = VDVT zt =: V↵tTo analyze write:

*
1xTI as

"

#→ 4. = VTZT
-
e

Ztt , = Van, = EttHEZTK - VTVDV'

⇐ :÷¥÷:=uiE¥⇐÷÷÷÷÷÷?

Power method - analysis

⌃ :=
NX

i=1

(xi � x̄)(xi � x̄)T v⇤ = argmax
v

vT⌃v

zt+1 =
⌃zt

k⌃ztk2
z0 ⇠ N (0, I) Iterate:

⌃ = VDVT zt =: V↵tTo analyze write:

↵t+1 = VT zt+1 =
VT⌃zt
k⌃ztk

=
D↵t

kD↵tk
=

D2↵t�1

kD2↵t�1k
=

Dt↵0

kDt↵0k

Dt = (D1,1)
t(D/D1,1)

t ! (D1,1)
te1e

T
1 since Di,i/D1,1 < 1

a-T
I
-
①a#is

An application: Matrix completion

17,700 movies, 480,189 users, 99,072,112 ratings (Sparsity: 1.2%)

Given historical data on how users rated movies in past:

Predict how the same users will rate movies in the future (for $1 million prize)
-

n.

Matrix completion

n movies, m users, |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T)i,j � si,j ||22
-

ED
us

→ n

Matrix completion

n movies, m users, |S| ratings

argmin
U2Rm⇥d,V 2Rn⇥d

X

(i,j,s)2S

||(UV T)i,j � si,j ||22

How do we solve it? With full information?

#

PCA Sf Rh
"m

(ie we have
if not : all ratings)

Need some assumptions

rank(s) - k
entries in St

Elk)

PCA and SVD take-aways

PCA finds a d-dimensional representation with:
Highest variance in any d-dimensional space
Lowest reconstruction error
spanned by the top d eigenvectors of covariance matrix

How to find the top d eigenvectors?
SVD: (X - I !) := A = U S VT

V are the eigenvectors of ATA
U are the eigenvectors of AAT

Power method

This is one way to represent data in lower dimensions: there are others with other properties
E.g., that approximately maintain pairwise distances

©2018 Kevin Jamieson

Expectation
Maximization: an
algorithmic template

©Kevin Jamieson 2018

Recall Lloyd’s algorithm

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it is closest
to.

4. Each Center finds the
centroid of the points it
owns…

5. …and jumps there

6. …Repeat until
terminated!

e

©Kevin Jamieson 2018

Recall Lloyd’s algorithm

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it is closest
to.

4. Each Center finds the
centroid of the points it
owns…

5. …and jumps there

6. …Repeat until
terminated!

©Kevin Jamieson 2018

Recall Lloyd’s algorithm

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it is closest
to.

4. Each Center finds the
centroid of the points it
owns…

5. …and jumps there

6. …Repeat until
terminated!

Fixing centers,
assign points to
“most probable” cluster

Fixing assignment,
compute “most likely” center

©Kevin Jamieson 2018

Recall Lloyd’s algorithm

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it is closest
to.

4. Each Center finds the
centroid of the points it
owns…

5. …and jumps there

6. …Repeat until
terminated!

Fixing centers,
assign points to
“most probable” cluster

Fixing assignment,
compute “most likely” center

©Kevin Jamieson 2018

Recall Lloyd’s algorithm

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it is closest
to.

4. Each Center finds the
centroid of the points it
owns…

5. …and jumps there

6. …Repeat until
terminated!

Fixing centers,
assign points to
“most probable” cluster

Fixing assignment,
compute “most likely” center

Expectation:

Maximization:

er

D

©Kevin Jamieson 2018

Recall Lloyd’s algorithm

1. Ask user how many
clusters they’d like. (e.g.
k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it is closest
to.

4. Each Center finds the
centroid of the points it
owns…

5. …and jumps there

6. …Repeat until
terminated!

Fixing centers,
assign points to
“most probable” cluster

Fixing assignment,
compute “most likely” center

Expectation:

Maximization:

©Kevin Jamieson 2018

What likelihood function?

Fixing centers,
assign points to
“most probable” cluster

Fixing assignment,
compute “most likely” center

Expectation:

Maximization:

There are k truncated Gaussians
each generating dataD

©Kevin Jamieson 2018

What likelihood function?

Fixing centers,
assign points to
“most probable” cluster

Fixing assignment,
compute “most likely” center

Expectation:

Maximization:

There are k truncated Gaussians
each generating data

©Kevin Jamieson 2018

The Expectation Maximization template

Fixing centers,
assign points to
“most probable” cluster

Fixing assignment,
compute “most likely” center

Expectation:

Maximization:

Expectation:

Fix parameters,
estimate unobserved
data

Maximization:
Fix unobserved data,
find MLE for parameters

©Kevin Jamieson 2018

The Expectation Maximization template

Fixing centers,
assign points to
“most probable” cluster

Fixing assignment,
compute “most likely” center

Expectation:

Maximization:

Expectation:

Fix parameters,
estimate unobserved
data

Maximization:
Fix unobserved data,
find MLE for parameters

©Kevin Jamieson 2018

Why use this template?

Usually, the joint optimization problem is hard
to solve (e.g., finding the global optimum to k-means)

Expectation:

Fix parameters,
estimate unobserved
data

Maximization:
Fix unobserved data,
find MLE for parameters

