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Nearest Neighbor



Some data, Bayes Classifier

Optimal “Bayes” classifier:

Figures stolen from Hastie et al

P(Y = 1|X = x) =
1

2

Training data:
True label: +1

True label: -1

Predicted label: +1

Predicted label: -1



Linear Decision Boundary

Linear Decision boundary

xTw + b = 0

Training data:
True label: +1

True label: -1

Learned:

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al



15 Nearest Neighbor Boundary

Training data:
True label: +1

True label: -1

Learned:
15 nearest neighbor decision  

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al



1 Nearest Neighbor Boundary

Training data:
True label: +1

True label: -1

Learned:
1 nearest neighbor decision  

boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al



k-Nearest Neighbor Error

Bias-Variance tradeoff

Best possible

As k->infinity?

As k->1?

Bias:

Variance: 

Bias:

Variance: 

Figures stolen from Hastie et al



Notable distance metrics  
(and their level sets)

L1 norm (taxi-cab)

L-infinity (max) norm

Mahalanobis

L2 norm 



1 nearest neighbor

Dist(xi,xj) =(xi
1 – xj

1)2+(3xi
2 – 3xj

2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi
1 – xj

1)2 + (xi
2 – xj

2)2

One can draw the nearest-neighbor regions in input space.



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1 xi 2 Rd, yi 2 {0, 1}

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY



1 nearest neighbor guarantee - classification

{(xi, yi)})ni=1

1-nearest neighbor error =

xi 2 Rd, yi 2 {0, 1}

As xa ! xb we have P(Ya = 1|Xa = xa) ! P(Yb = 1|Xb = xb)

If p⇤ = maxy=0,1 P(Yb = y|Xb = xb) then the Bayes Error = 1� p⇤

lim
n!1

P( bf1NN (xa) 6= Ya|Xa = xa) = P(Yb 6= Ya|Xa = xb, Xb = xb)

= P(Yb = 1|Xb = xb)P(Ya = 0|Xa = xb) + P(Yb = 0|Xb = xb)P(Ya = 1|Xa = xb)

= 2p⇤(1� p⇤)  2(1� p⇤)

Theorem[Cover, Hart, 1967] If PX is supported everywhere in Rd
and P (Y =

1|X = x) is smooth everywhere, then as n ! 1 the 1-NN classification rule has

error at most twice the Bayes error rate.

(xi, yi)
iid⇠ PXY



Nearest neighbor regression

{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi



Nearest neighbor regression

{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi

Why are far-away neighbors 
weighted same as close neighbors!

Kernel smoothing: K(x, y)

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)



Nearest neighbor regression

{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)



Nearest neighbor regression

{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

Why just average them?



Nearest neighbor regression

{(xi, yi)})ni=1

Nk(x0) = k-nearest neighbors of x0

bf(x0) =
X

xi2Nk(x0)

1

k
yi

bf(x0) =

Pn
i=1 K(x0, xi)yiPn
i=1 K(x0, xi)

bf(x0) = b(x0) + w(x0)
Tx0

w(x0), b(x0) = argmin
w,b

nX

i=1

K(x0, xi)(yi � (b+ wTxi))
2

Local Linear Regression



Curse of dimensionality Ex. 1

side length r

X is uniformly distributed over [0, 1]p. What is P(X 2 [0, r]p)?

Ed
ge

 le
ng

th
 r



Curse of dimensionality Ex. 2

{Xi}ni=1 are uniformly distributed over [�.5, .5]p.

What is the median distance from a point at origin to its 1NN?



Nearest Neighbor Overview

• Very simple to explain and implement
• No training! But finding nearest neighbors in large 

dataset at test can be computationally demanding (kD-
trees help)

• You can use other forms of distance (not just Euclidean)
• Smoothing with Kernels and local linear regression can 

improve performance (at the cost of higher variance)
• With a lot of data, “local methods” have strong, simple 

theoretical guarantees. 
• Without a lot of data, neighborhoods aren’t “local” and 

methods suffer. 
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Bootstrap



Limitations of CV

              The Bootstrap: Developed by Efron in 1979. 

• An 80/20 split throws out a relatively large amount of data if 
only have, say, 20 examples.

• Test error is informative, but how accurate is this number? 
(e.g., 3/5 heads vs. 30/50)

• How do I get confidence intervals on statistics like the median 
or variance of a distribution?

• Instead of the error for the entire dataset, what if I want to 
study the error for a particular example x?



Bootstrap: basic idea

Given dataset drawn iid samples with CDF       : 

D = {z1, . . . , zn}
i.i.d.⇠ FZ

We compute a statistic of the data to get: b✓ = t(D)

D = {z1, . . . , zn}
i.i.d.⇠ FZ

What is the distribution of                       ? b✓ = t(D)



Bootstrap: basic idea

Given dataset drawn iid samples with CDF       : 

D = {z1, . . . , zn}
i.i.d.⇠ FZ

We compute a statistic of the data to get: b✓ = t(D)

D = {z1, . . . , zn}
i.i.d.⇠ FZ

FZ(x) = P(Z  x)

bFZ,n(x) =
1

n

nX

i=1

1{zi  x}
FZ(x) = P(Z  x)

bFZ,n(x) =
1

n

nX

i=1

1{zi  x}

| bFZ,n(x)� FZ(x)|
n!1! 0 a.s.



Bootstrap: basic idea

For b=1,…,B define the bth bootstrapped dataset as 
drawing n samples with replacement from D  

D⇤b = {z⇤b1 , . . . , z⇤bn } i.i.d.⇠ bFZ,n

✓⇤b = t(D⇤b)and the bth bootstrapped statistic as:

Given dataset drawn iid samples with CDF       : 

D = {z1, . . . , zn}
i.i.d.⇠ FZ

D = {z1, . . . , zn}
i.i.d.⇠ FZ

We compute a statistic of the data to get: b✓ = t(D)



Bootstrap: basic idea

Given dataset drawn iid samples with CDF       : 

D⇤b = {z⇤b1 , . . . , z⇤bn } i.i.d.⇠ bFZ,n ✓⇤b = t(D⇤b)

FZ

bFZ,60
b✓

Given dataset drawn iid samples with CDF       : 

D = {z1, . . . , zn}
i.i.d.⇠ FZ

D = {z1, . . . , zn}
i.i.d.⇠ FZ

We compute a statistic of the data to get: b✓ = t(D)

| bFZ,n(x)� FZ(x)|
n!1! 0 a.s.



Applications
Common applications of the bootstrap:
• Estimate parameters that escape simple analysis like the variance or 

median of an estimate
• Confidence intervals
• Estimates of error for a particular example: 

b✓D ✓⇤b for b = 1, . . . , 10 95% confidence interval

Figures from Hastie et al



Takeaways
Advantages:
• Bootstrap is very generally applicable. Build a confidence interval around 
anything

• Very simple to use
• Appears to give meaningful results even when the amount of data is very 

small
• Very strong asymptotic theory (as num. examples goes to infinity)



Takeaways
Advantages:
• Bootstrap is very generally applicable. Build a confidence interval around 
anything

• Very simple to use
• Appears to give meaningful results even when the amount of data is very 

small
• Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages
• Very few meaningful finite-sample guarantees 
• Potentially computationally intensive
• Reliability relies on test statistic and rate of convergence of empirical CDF 

to true CDF, which is unknown
• Poor performance on “extreme statistics”  (e.g., the max)

Not perfect, but better than nothing.


