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Some data, Bayes Classifier

Figures stolen from Hastie et al

Training data:
O True label: +1

O True label: -1

Optimal “Bayes” classifier:

1
PY =1|X = o) =

Predicted label: +1

Predicted label: -1




Linear Decision Boundary

o
0:::9 O )
O 0 go% O
o)
OoocaO o 080O
s 00
9 o % 589 0
0 0g~a°
Oo H (éjgoogo 0 %O & 5
0 000
qﬂ%@p% D0
_00'0®§3 O o)
o @ 0% ek 00
O: ‘e 0 (ﬁ (9110 O .
TR Yode s MR
« FHHHH O@Cg g i
0::0:9: 90T R
SEEE o ERE %(D CHEP e
: O SEEES
_000% 0
H eos o O'II
: 2 0F
0 Hi
S

Figures stolen from Hastie et al

Training data:

O True label: +1

O True label: -1

Learned:

Linear Decision boundary
tTw+b=0
Predicted label: +1

Predicted label: -1




15 Nearest Neighbor Boundary

Training data:
O True label: +1

O True label: -1

&earned:
15 nearest neighbor decision

boundary (majority vote)

Predicted label: +1

Figures stolen from Hastie et al

Predicted label: -1




1 Nearest Neighbor Boundary

Training data:
O True label: +1

O True label: -1

Learned:

\1 nearest neighbor decision
boundary (majority vote)

Predicted label: +1

Predicted label: -1

Figures stolen from Hastie et al



k-Nearest Neighbor Error

k — Number of Nearest Neighbors
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Bias-Variance tradeoff

As K->infinity?

Bias:

Variance:

As k->17
Bias:

Variance:



Notable distance metrics
(and their level sets)

L, norm (taxi-cab)

Mahalanobis

L-infinity (max) norm



1 nearest neighbor

One can draw the nearest-neighbor regions in input space.

Dist(x/,}/) = (X' — X2 + (XIy — XI5)?  Dist(xi,x/) =(xi, — xi,)2+(3xi, — 3%i,,)?

The relative scalings in the distance metric affect region shapes



1 nearest neighbor guarantee - classification

{(mi,yi) )iy z; € Ry, €{0,1} (24, Y:) “ Pxy

Theorem|[Cover, Hart, 1967] If Px is supported everywhere in R? and P(Y =
1|X = x) is smooth everywhere, then as n — co the 1-NN classification rule has
error at most twice the Bayes error rate.




1 nearest neighbor guarantee - classification

{(mi,yi) )iy z; € Ry, €{0,1} (24, Y:) “ Pxy

Theorem|[Cover, Hart, 1967] If Px is supported everywhere in R? and P(Y =
1|X = x) is smooth everywhere, then as n — co the 1-NN classification rule has
error at most twice the Bayes error rate.

As x, — xp we have P(Y, = 1| X, = z,) = P(Y, = 1| Xy, = xp)
If p. = max,—0,1P(Yy, = y|Xp = xp) then the Bayes Error =1 — p,
I-nearest neighbor error =

Tim P(finn(za) # Yal Xa = 7a) = P(Vs # Yol Xo = 23, Xp = m)

= P(Y}, = 1|Xb = xb)IP’(Ya = O|Xa = CBb) + P(va = 0|Xb = J}b)]P)(Ya = 1|Xa = xb)




Nearest neighbor regression

{(zi, yi) })ita
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Nearest neighbor regression

{(zi, yi) })ita
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Nk (xg) = k-nearest neighbors of x

Ky (z

Why are far-away neighbors
weighted same as close neighbors!

Kernel smoothing: K(x,y)
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Nearest neighbor regression
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Nearest neighbor regression
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Nk (zg) = k-nearest neighbors of x Why just average them?
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Nearest neighbor regression

15
15

-0.5 0.0 0.5 1.0
0.0 0.5 1.0

-0.5

-1.0

-1.0

‘ [ ‘ J T T T T T T T T T
0.0 0.2 04 XQ 06 0.8 1.0 0.0 0.2 04 XQ 06 08 10 00 02 04 06 08 10

Ni(x9) = k-nearest neighbors of x
ry - 2?21 K(ﬂﬁo,%‘)yi o~

N 1
fzo) = xieNZk(xO) L f(zo) = Z?:l K (20, 1) f(.%‘o) = b(iEo) + UJ(ZBQ)TQTO
w(xg),b(xg) = arg migl K(xg,x;)(y; — (b+ ufpa:i))2

=1

Local Linear Regression



Curse of dimensionality Ex. 1
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X is uniformly distributed over [0, 1]?. What is P(X € [0,7]P)?



Curse of dimensionality Ex. 2

{X;}?_, are uniformly distributed over [—.5, .5]P.

05 0.6

Median Radius

00 01 02 03 04

Dimension

What is the median distance from a point at origin to its INN?



Nearest Neighbor Overview

« Very simple to explain and implement

* No training! But finding nearest neighbors in large
dataset at test can be computationally demanding (kD-
trees help)

* You can use other forms of distance (not just Euclidean)

* Smoothing with Kernels and local linear regression can
iImprove performance (at the cost of higher variance)

* With a lot of data, “local methods” have strong, simple
theoretical guarantees.

« Without a lot of data, neighborhoods aren’t “local” and
methods suffer.



Bootstrap
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Limitations of CV

An 80/20 split throws out a relatively large amount of data if
only have, say, 20 examples.

Test error is informative, but how accurate is this number?
(e.g., 3/5 heads vs. 30/50)

How do | get confidence intervals on statistics like the median
or variance of a distribution?

Instead of the error for the entire dataset, what if | want to
study the error for a particular example x?

The Bootstrap: Developed by Efron in 1979.



Bootstrap: basic idea

Given dataset drawn iid samples with CDF F'y:
1.1.d.
D={z,...,2n} ~ Fy

We compute a statistic of the data to get: § — t(D)

What is the distribution of 6 = ¢(D)?



Bootstrap: basic idea

Given dataset drawn iid samples with CDF F
1.1.d.
D={z,...,2n} ~ Fy

We compute a statistic of the data to get: 9 — t(D)

Fy(x) = P(Z < )

FZn Zl{zz_

P

Fyn(z) — Fz(x)] "=°0 as.




Bootstrap: basic idea

Given dataset drawn iid samples with CDF F'y:

D={z,...,2n} L o

We compute a statistic of the data to get: § — t(D)

For b=1,...,B define the bth bootstrapped dataset as

and the bth bootstrapped statistic as: H*b — t(D*b)



Bootstrap: basic idea

Given dataset drawn iid samples with CDF F'y:
1.2.d.
D={z,...,2n} ~ Fy

We compute a statistic of the data to get: § = t(D)
b b by t.1.d. b b
Db = (b by R B geb gy




Applications

Common applications of the bootstrap:

- Estimate parameters that escape simple analysis like the variance or
median of an estimate

Confidence intervals

Estimates of error for a particular example:

D ) 95% confidence interval
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Figures from Hastie et al



Takeaways

Advantages:

- Bootstrap is very generally applicable. Build a confidence interval around
anything

« Very simple to use

- Appears to give meaningful results even when the amount of data is very
small

+ Very strong asymptotic theory (as num. examples goes to infinity)



Takeaways

Advantages:

- Bootstrap is very generally applicable. Build a confidence interval around
anything

« Very simple to use

- Appears to give meaningful results even when the amount of data is very
small

+ Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages
- Very few meaningful finite-sample guarantees
+ Potentially computationally intensive

- Reliability relies on test statistic and rate of convergence of empirical CDF
to true CDF, which is unknown

- Poor performance on “extreme statistics” (e.g., the max)

Not perfect, but better than nothing.



