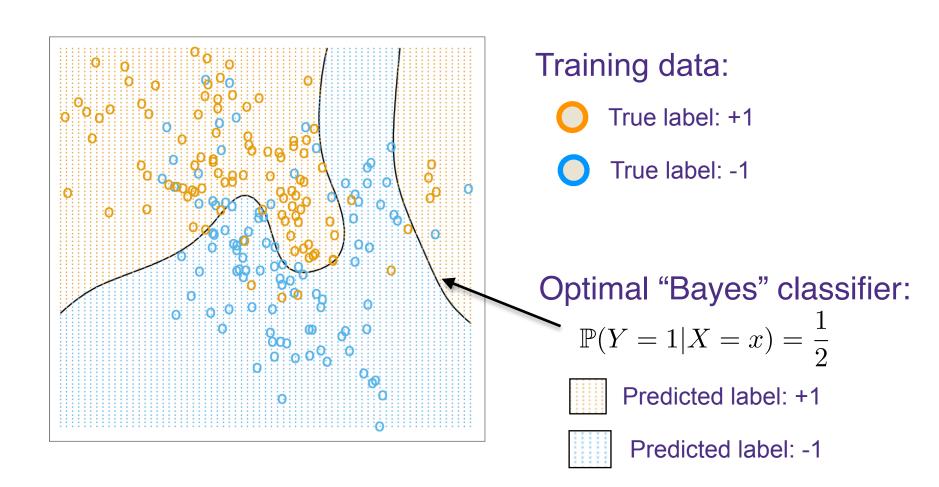
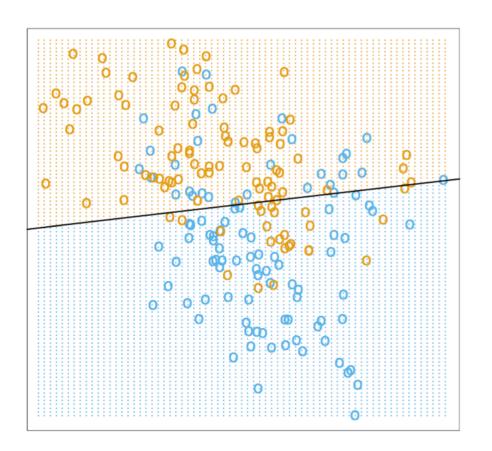
Nearest Neighbor

UNIVERSITY of WASHINGTON

Some data, Bayes Classifier



Linear Decision Boundary



Training data:

True label: +1

True label: -1

Learned:

Linear Decision boundary

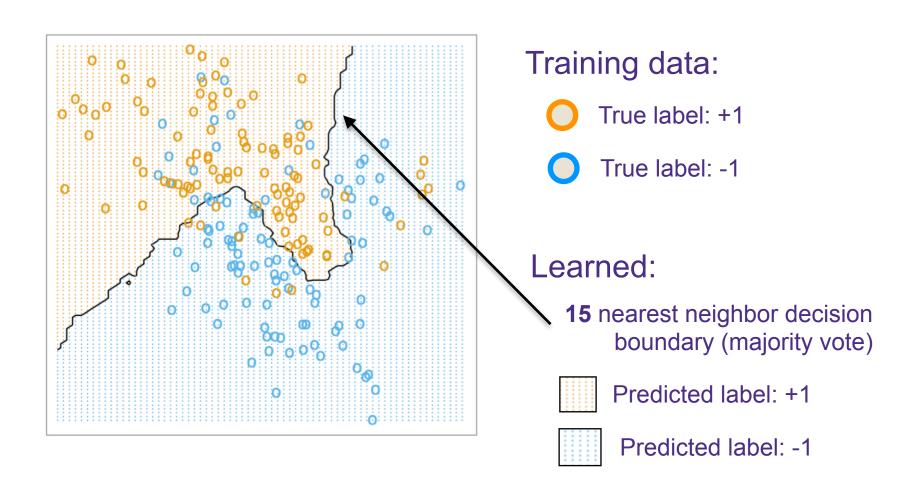
$$x^T w + b = 0$$

Predicted label: +1

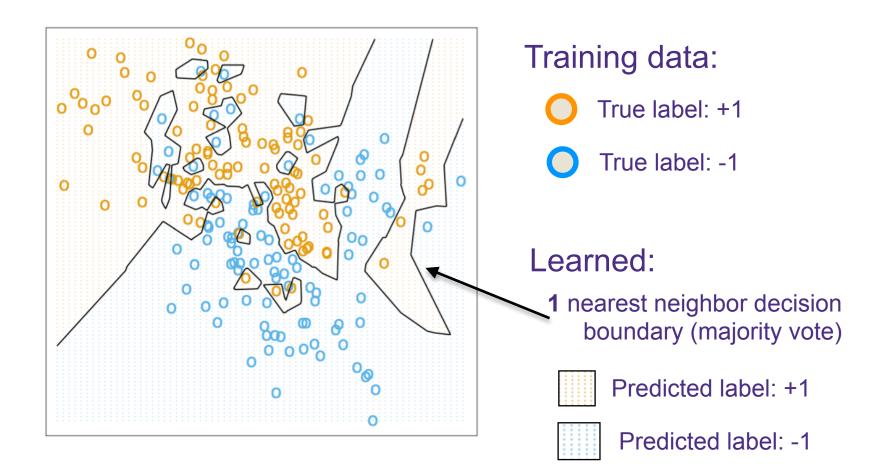
P

Predicted label: -1

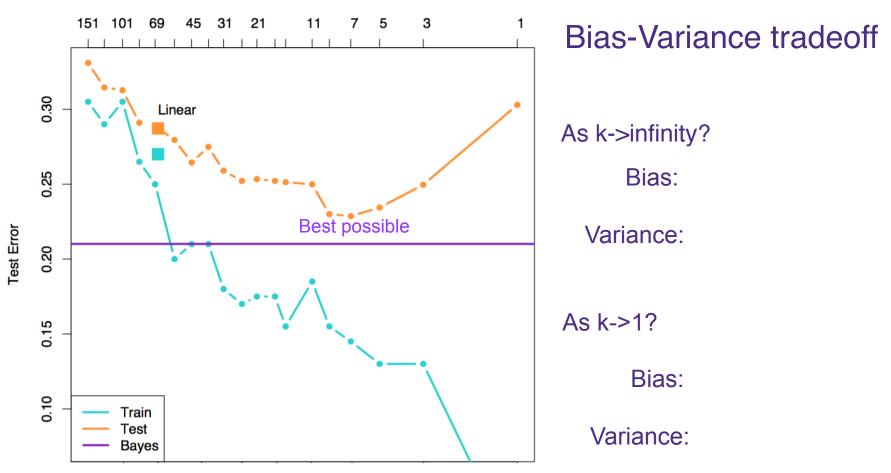
15 Nearest Neighbor Boundary



1 Nearest Neighbor Boundary

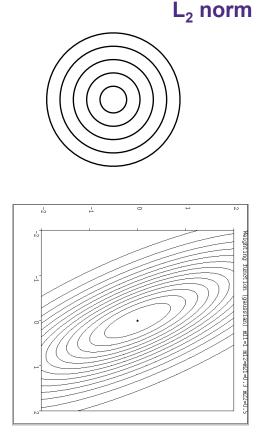


k-Nearest Neighbor Error

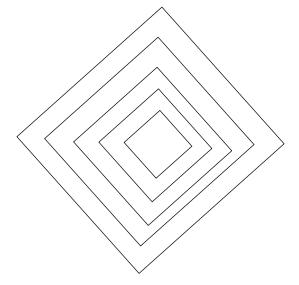


k - Number of Nearest Neighbors

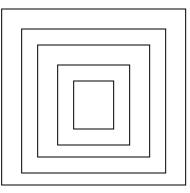
Notable distance metrics (and their level sets)



Mahalanobis



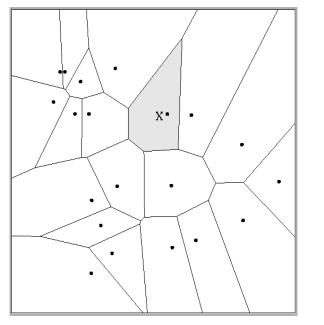
L₁ norm (taxi-cab)



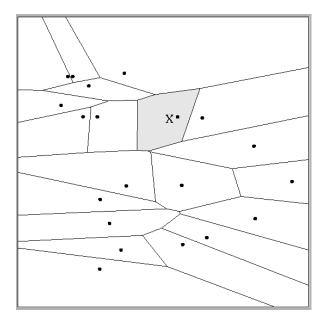
L-infinity (max) norm

1 nearest neighbor

One can draw the nearest-neighbor regions in input space.



 $Dist(\mathbf{x}^{i}, \mathbf{x}^{j}) = (x^{i}_{1} - x^{j}_{1})^{2} + (x^{i}_{2} - x^{j}_{2})^{2}$



$$Dist(\mathbf{x}^{i}, \mathbf{x}^{j}) = (x^{i}_{1} - x^{j}_{1})^{2} + (3x^{i}_{2} - 3x^{j}_{2})^{2}$$

The relative scalings in the distance metric affect region shapes

1 nearest neighbor guarantee - classification

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d, \quad y_i \in \{0, 1\} \qquad (x_i, y_i) \stackrel{iid}{\sim} P_{XY}$$

Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

1 nearest neighbor guarantee - classification

$$\{(x_i, y_i)\}_{i=1}^n \qquad x_i \in \mathbb{R}^d, \quad y_i \in \{0, 1\} \qquad (x_i, y_i) \stackrel{iid}{\sim} P_{XY}$$

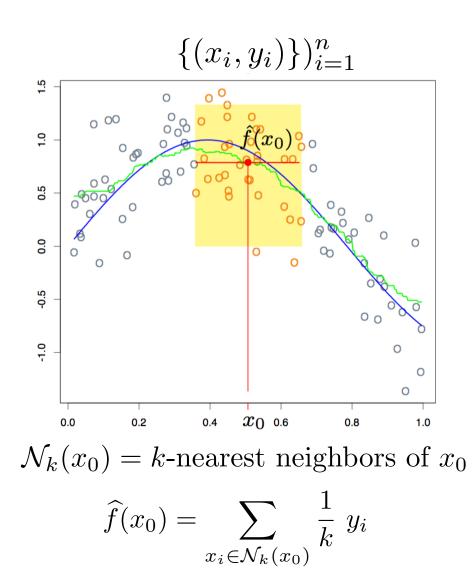
Theorem[Cover, Hart, 1967] If P_X is supported everywhere in \mathbb{R}^d and P(Y = 1|X = x) is smooth everywhere, then as $n \to \infty$ the 1-NN classification rule has error at most twice the Bayes error rate.

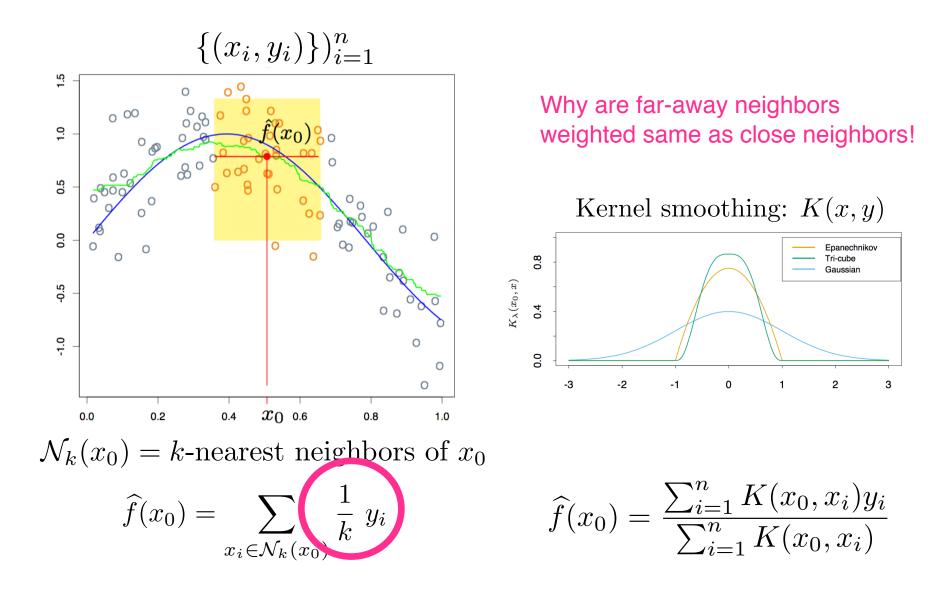
As
$$x_a \to x_b$$
 we have $\mathbb{P}(Y_a = 1 | X_a = x_a) \to \mathbb{P}(Y_b = 1 | X_b = x_b)$

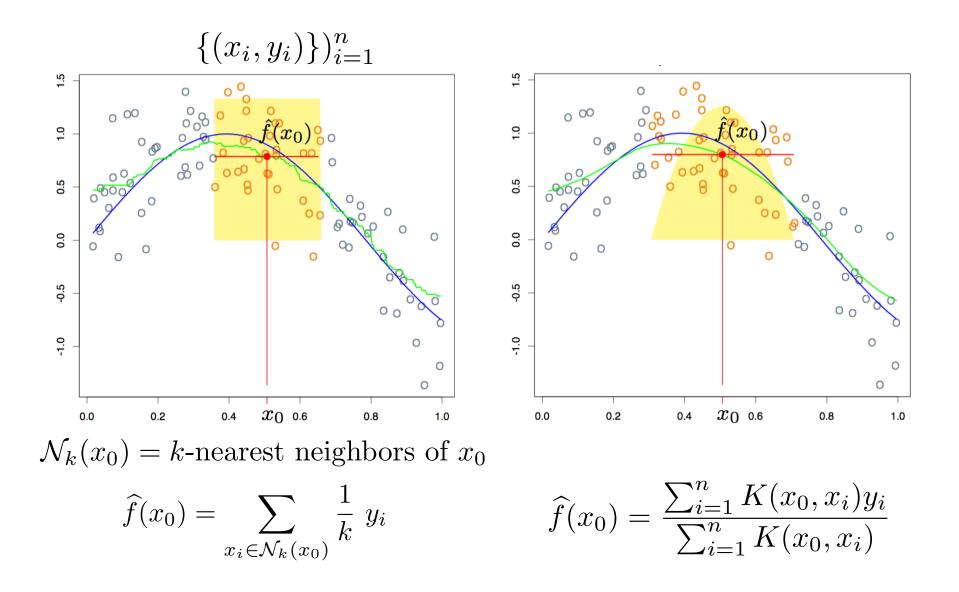
If $p_* = \max_{y=0,1} \mathbb{P}(Y_b = y | X_b = x_b)$ then the Bayes Error $= 1 - p_*$

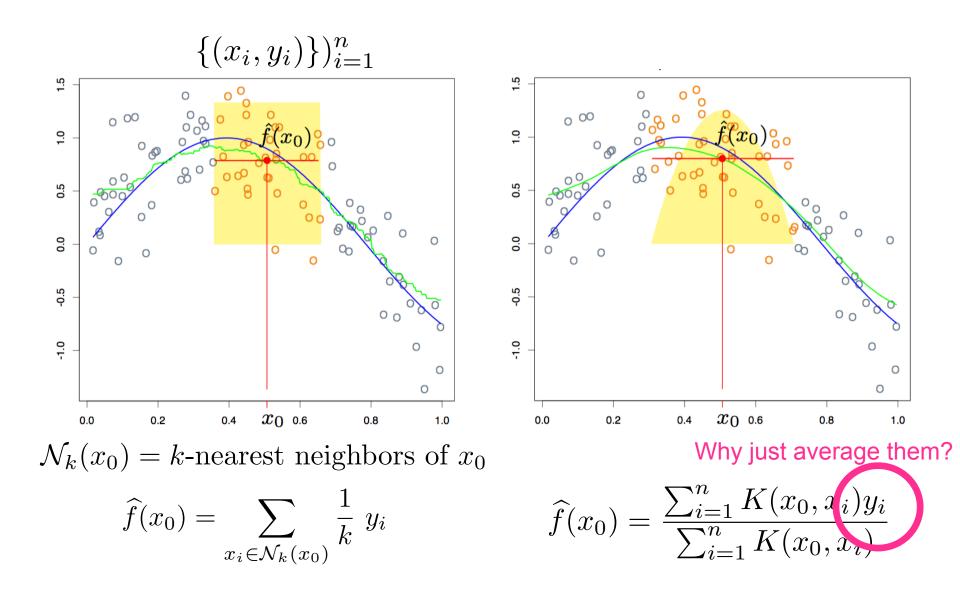
1-nearest neighbor error =

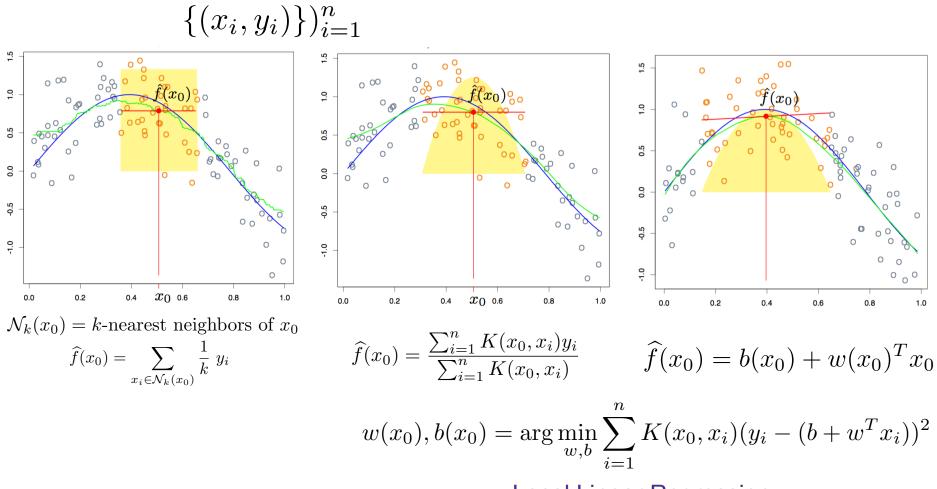
 $\lim_{n \to \infty} \mathbb{P}(\widehat{f}_{1NN}(x_a) \neq Y_a | X_a = x_a) = \mathbb{P}(Y_b \neq Y_a | X_a = x_b, X_b = x_b)$ $= \mathbb{P}(Y_b = 1 | X_b = x_b) \mathbb{P}(Y_a = 0 | X_a = x_b) + \mathbb{P}(Y_b = 0 | X_b = x_b) \mathbb{P}(Y_a = 1 | X_a = x_b)$ $= 2p_*(1 - p_*) \le 2(1 - p_*)$





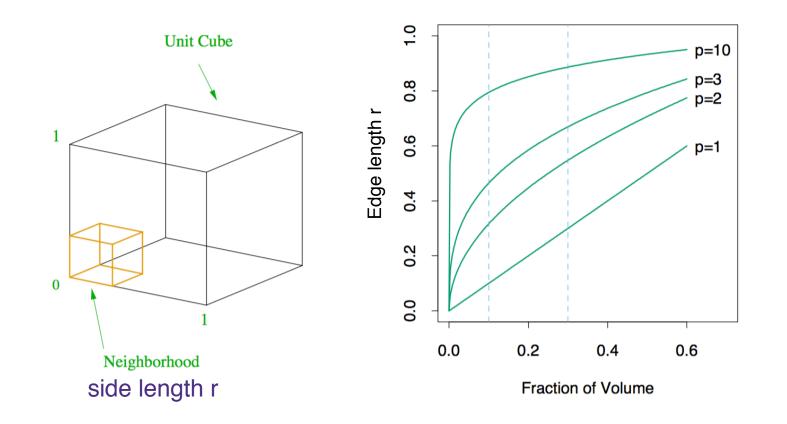






Local Linear Regression

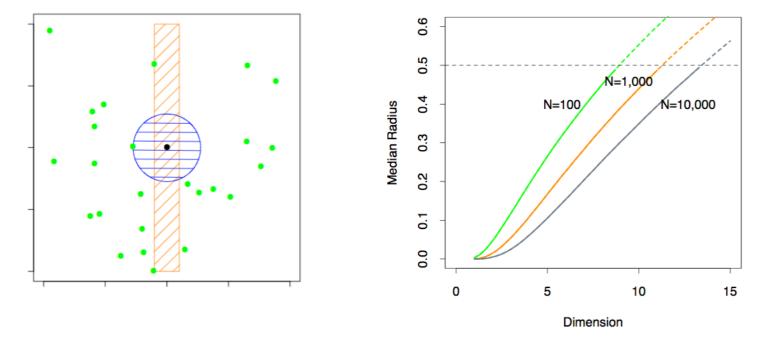
Curse of dimensionality Ex. 1



X is uniformly distributed over $[0,1]^p$. What is $\mathbb{P}(X \in [0,r]^p)$?

Curse of dimensionality Ex. 2

 ${X_i}_{i=1}^n$ are uniformly distributed over $[-.5, .5]^p$.



What is the median distance from a point at origin to its 1NN?

Nearest Neighbor Overview

- Very simple to explain and implement
- No training! But finding nearest neighbors in large dataset at test can be computationally demanding (kDtrees help)
- You can use other forms of distance (not just Euclidean)
- Smoothing with Kernels and local linear regression can improve performance (at the cost of higher variance)
- With a lot of data, "local methods" have strong, simple theoretical guarantees.
- Without a lot of data, neighborhoods aren't "local" and methods suffer.

UNIVERSITY of WASHINGTON

Limitations of CV

- An 80/20 split throws out a relatively large amount of data if only have, say, 20 examples.
- Test error is informative, but how accurate is this number? (e.g., 3/5 heads vs. 30/50)
- How do I get confidence intervals on statistics like the median or variance of a distribution?
- Instead of the error for the entire dataset, what if I want to study the error for a particular example x?

The Bootstrap: Developed by Efron in 1979.

Given dataset drawn iid samples with CDF F_Z :

$$\mathcal{D} = \{z_1, \dots, z_n\} \overset{i.i.d.}{\sim} F_Z$$

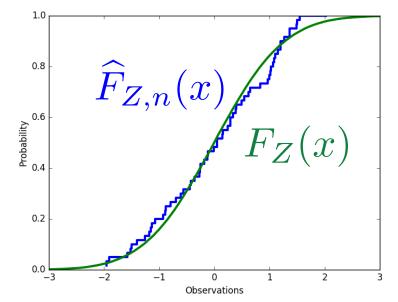
We compute a *statistic* of the data to get: $\widehat{\theta} = t(\mathcal{D})$

What is the distribution of $\ \widehat{\theta} = t(\mathcal{D})$?

Given dataset drawn iid samples with CDF F_{z} :

$$\mathcal{D} = \{z_1, \ldots, z_n\} \overset{i.i.d.}{\sim} F_Z$$

We compute a *statistic* of the data to get: $\widehat{\theta} = t(\mathcal{D})$



$$F_{Z}(x) = \mathbb{P}(Z \le x)$$
$$\widehat{F}_{Z,n}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{z_{i} \le x\}$$
$$|\widehat{F}_{Z,n}(x) - F_{Z}(x)| \xrightarrow{n \to \infty} 0 \quad \text{a.s.}$$

a.s.

Given dataset drawn iid samples with CDF F_Z :

$$\mathcal{D} = \{z_1, \dots, z_n\} \overset{i.i.d.}{\sim} F_Z$$

We compute a *statistic* of the data to get: $\theta = t(\mathcal{D})$

For b=1,...,B define the *b*th *bootstrapped* dataset as drawing *n* samples with replacement from *D* $\mathcal{D}^{*b} = \{z_1^{*b}, \ldots, z_n^{*b}\} \stackrel{i.i.d.}{\sim} \widehat{F}_{Z,n}$

and the *b*th bootstrapped statistic as: $\theta^{*b} = t(\mathcal{D}^{*b})$

Given dataset drawn iid samples with CDF F_Z : $\mathcal{D} = \{z_1, \ldots, z_n\} \stackrel{i.i.d.}{\sim} F_Z$

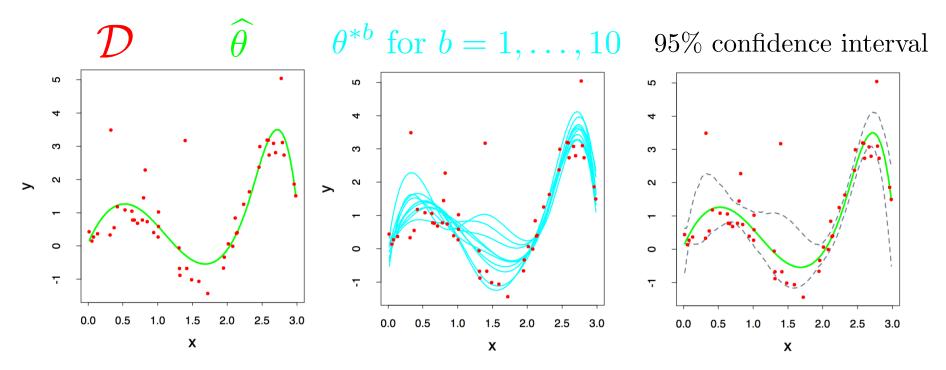
Observations

We compute a *statistic* of the data to get: $\widehat{\theta} = t(\mathcal{D})$ $\mathcal{D}^{*b} = \{z_1^{*b}, \dots, z_n^{*b}\} \stackrel{i.i.d.}{\sim} \widehat{F}_{Z,n} \quad \theta^{*b} = t(\mathcal{D}^{*b})$ 1.0 $||\widehat{F}_{Z,n}(x) - F_Z(x)| \stackrel{n \to \infty}{\to} 0$ a.s. $\widehat{F}_{Z,60}$ 0.8 Probability 6.0 $F_{\mathbf{Z}}$ 0.2 0.0

Applications

Common applications of the bootstrap:

- Estimate parameters that escape simple analysis like the variance or median of an estimate
- Confidence intervals
- Estimates of error for a particular example:



Figures from Hastie et al

Takeaways

Advantages:

- Bootstrap is very generally applicable. Build a confidence interval around *anything*
- Very simple to use
- Appears to give meaningful results even when the amount of data is very small
- Very strong asymptotic theory (as num. examples goes to infinity)

Takeaways

Advantages:

- Bootstrap is very generally applicable. Build a confidence interval around *anything*
- Very simple to use
- Appears to give meaningful results even when the amount of data is very small
- Very strong asymptotic theory (as num. examples goes to infinity)

Disadvantages

- Very few meaningful finite-sample guarantees
- Potentially computationally intensive
- Reliability relies on test statistic and rate of convergence of empirical CDF to true CDF, which is unknown
- Poor performance on "extreme statistics" (e.g., the max)

Not perfect, but better than nothing.