
Warm up

For each block compute the memory required in terms of n, p, d.
If d << p << n, what is the most memory efficient program (blue, green, red)?
If you have unlimited memory, what do you think is the fastest program?

1 float in NumPy = 8 bytes
106 ⇡ 220 bytes = 1 MB
109 ⇡ 230 bytes = 1 GB

jil P

Xi hjlxd cosfgjxo.tk

mid x
EIR

p
H Eh ElRnxp

qt.ithtf
fast tf nd

trip
xp

Ki

I04

nd Ip

Convexity

What is a convex set?

Examples of convex sets

Examples of non-convex functions: anything else

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

K car x 1 110

24,72 Yuya C If

show thy ci Horthy
CK

y

x s
h

What is a convex function?

Examples of convex functions: “look like bowls”

Examples of non-convex functions: anything else

A function f : Rd ! R is convex if f((1� �)x+ �y) (1� �)f(x) + �f(y)
for all x, y 2 K and � 2 [0, 1]

dom f Ix Hx define

do

A

Convex functions and convex sets?

A function f : Rd ! R is convex if f((1� �)x+ �y) (1� �)f(x) + �f(y)
for all x, y 2 K and � 2 [0, 1]

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

A function f : Rd ! R is convex if the set {(x, t) 2 Rd+1 : f(x) t} is convex

si qxiITiiiTiiiiIi

More definitions of convexity

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

A function f : Rd ! R is convex if the set {(x, t) 2 Rd+1 : f(x) t} is convex

A function f : Rd ! R that is di↵erentiable everywhere is convex if
f(y) � f(x) +rf(x)>(y � x) for all x, y 2 dom(f)

Try at hog

µ

2
show convex

using J
a

e

Offal

More definitions of convexity

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

A function f : Rd ! R is convex if the set {(x, t) 2 Rd+1 : f(x) t} is convex

A function f : Rd ! R that is di↵erentiable everywhere is convex if
f(y) � f(x) +rf(x)>(y � x) for all x, y 2 dom(f)

A function f : Rd ! R that is twice-di↵erentiable everywhere is convex if
r2f(x) ⌫ 0 for all x 2 dom(f)

f X I x2
f Sc X

f X I o
f is conve

catassi tf so
E Aja.ozoi

24
2x 2x

Why do we care about convexity?

Convex functions
- All local minima are global minima
- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

IET 7 f
globalminim

7 7 atlocalminima 7

Gradient Descent

Convex Function Non-convex Function

Initialize: w0 = 0

for t = 1, 2, . . .

wt+1 = wt � ⌘rf(wt)

or randomly

step size

w h I
run

Sub-Gradient Descent

g is a subgradient at x if f(y) � f(x) + gT (y � x)g is a subgradient at x if f(y) � f(x) + gT (y � x)

Initialize: w0 = 0

for t = 1, 2, . . .

Find any gt such that f(y) � f(wt) + g>t (y � wt)

wt+1 = wt � ⌘gt

Convex Function Non-convex Function

I kno diff at
9 0

but 9 ii

subgradientsarenotunigT

t

e E
exist for non convex Fns

Coordinate descent

Initialize: w0 = 0

for t = 1, 2, . . .

Let it = t % n

w(it)
t+1 = w(it)

t � ⌘t
@f(w)

@w(it)

���
w=wt

Special case:

X z

e
TT

choose a I I

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

Logistic Loss: `i(w) = log(1 + exp(�yi xT
i w))

Squared error Loss: `i(w) = (yi � xT
i w)

2

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

each
If lil w

Ii c
convex

temkon
t

we z In 0wDilwYw we

Optimization summary

■ You can always run gradient descent whether f is
convex or not. But you only have guarantees if f is
convex

■ Many bells and whistles can be added onto gradient
descent such as momentum and dimension-specific
step-sizes (Nesterov, Adagrad, ADAM, etc.)

f x O af x O

for convex opt
UX software puck

Stochastic Gradient
Descent

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent: 8
what if n 10

we 2 a II Klimt went

Machine Learning Problems

{(xi, yi)}ni=1 xi 2 Rd yi 2 R
nX

i=1

`i(w)■ Learning a model’s parameters:

■ Given data:

wt+1 = wt � ⌘rw

1

n

nX

i=1

`i(w)

!���
w=wt

Gradient Descent:

Stochastic Gradient Descent:
wt+1 = wt � ⌘rw`It(w)

���
w=wt

It drawn uniform at
random from {1, . . . , n}

E[r`It(w)] =

H

FE oeEInEo

Machine Learning Problems
nX

i=1

`i(w)■ Learning a model’s parameters:

Stochastic Gradient Descent:
wt+1 = wt � ⌘rw`It(w)

���
w=wt

It drawn uniform at
random from {1, . . . , n}

E[r`It(w)] = r`(w)

t

Stochastic Gradient Descent

wt+1 = wt � ⌘rw`It(w)
���
w=wt

It drawn uniform at
random from {1, . . . , n}

Let so that

If sup
w

max
i

kr`i(w)k2 Gkw1 � w0k22 R and then

w̄ =
1

T

TX

t=1

wt

E[`(w̄)� `(w⇤)]
R

2T⌘
+

⌘G

2

r
RG

T
⌘ =

r
R

GT

Theorem

(In practice use last iterate)

E
⇥
r`It(w)

⇤
=

1

n

nX

i=1

r`i(w) =: r`(w)

f wt flw.IE torffD typically convert

nloyllle
fifth life e

T

t.it niif IE

Stochastic Gradient Descent

E[||wt+1 � w⇤||22] = E[||wt � ⌘r`It(wt)� w⇤||22]
Proof

Stochastic Gradient Descent

E[||wt+1 � w⇤||22] = E[||wt � ⌘r`It(wt)� w⇤||22]

= E[||wt � w⇤||22]� 2⌘E[r`It(wt)
T (wt � w⇤)] + ⌘2E[||r`It(wt)||22]

E[r`It(wt)
T (wt � w⇤)] = E

⇥
E[r`It(wt)

T (wt � w⇤)|I1, w1, . . . , It�1, wt�1]
⇤

= E
⇥
r`(wt)

T (wt � w⇤)
⇤

� E
⇥
`(wt)� `(w⇤)

⇤

 E[||wt � w⇤||22]� 2⌘E[`(wt)� `(w⇤)] + ⌘2G

TX

t=1

E[`(wt)� `(w⇤)]
1

2⌘

�
E[||w1 � w⇤||22]� E[||wT+1 � w⇤||22] + T⌘2G

�

 R

2⌘
+

T⌘G

2

Proof

L convexity

Stochastic Gradient Descent

Jensen’s inequality:
For any random Z 2 Rd and convex function � : Rd ! R, �(E[Z]) E[�(Z)]

E[`(w̄)� `(w⇤)]
1

T

TX

t=1

E[`(wt)� `(w⇤)] w̄ =
1

T

TX

t=1

wt

Proof

Stochastic Gradient Descent

Jensen’s inequality:
For any random Z 2 Rd and convex function � : Rd ! R, �(E[Z]) E[�(Z)]

E[`(w̄)� `(w⇤)]
1

T

TX

t=1

E[`(wt)� `(w⇤)] w̄ =
1

T

TX

t=1

wt

E[`(w̄)� `(w⇤)]
R

2T⌘
+

⌘G

2

r
RG

T
⌘ =

r
R

GT

Proof

Mini-batch SGD

Instead of one iterate, average B stochastic gradient together

Advantages:
⁃ de-noises gradient

⁃ Matrix computations

⁃ Parallelization

reducing variance of gradient

Computing B gradients at afire

I
compute gradients by sender's a partition

of the batch to each computer

Stochastic Gradient
Descent: A Learning
perspective

Learning Problems as Expectations

> Minimizing loss in training data:
– Given dataset:

> Sampled iid from some distribution p(x,y) on features:
– Loss function, e.g., hinge loss, logistic loss,…
– We often minimize loss in training data:

> However, we should really minimize expected loss on all data:

> So, we are approximating the integral by the average on the training data

Gradient descent in Terms of Expectations

> “True” objective function:

> Taking the gradient:

> “True” gradient descent rule:

> How do we estimate expected gradient?

Warm up - Revisited

For each block compute the memory required in terms of n, p, d.
If d << p << n, what is the most memory efficient program (blue, green, red)?
If you have unlimited memory, what do you think is the fastest program?

1 float in NumPy = 8 bytes
106 ⇡ 220 bytes = 1 MB
109 ⇡ 230 bytes = 1 GB

ndtptpdY ii VE ZOCYI
ho.to

JirLP3
Ieuan

3

k
i

l

