Tentative Schedule

Date Content Reading Slides
Basics
3/30 Welcome/overview (Kevin and Jamie) Murphy 1.1 - 1.3, 2.2-2.6
  Optional: HTF 1
Slides
Maximum Likelihood, Linear Regression, Overfitting, Regularization
4/1 Maximum likelihood for Bernoulli, Gaussian (Kevin)
Murphy 4.1, 6.4
  Optional: Wasserman 9.1.-9.8
Slides (Kevin)
Annotated Slides (Kevin)
4/6 Linear least squares (Jamie) Murphy 6.4, 7.1-7.3

  Optional: HTF 3.1-3.2
Slides (Jamie)
Annotated Slides (Jamie)
4/8 Bias-Variance
Murphy 6.4, 7.5.1, Fortmann-Roe essay
 Optional: HTF 7.1-7.4
Slides (Jamie), Annotated (Jamie)
4/13 Bias-Variance, Overfitting Murphy 6.4-6.5
 Optional: HTF 7.1-7.4
Slides (Kevin), Annotated (Kevin)
4/15 Bias-Variance, Overfitting, Ridge regression Murphy 6.4-6.5, 7.5
 Optional: HTF 7.1-7.4, 7.10-7.12, 3.4
Slides (Kevin), Annotated (Kevin)
4/20 k-fold cross validation, Lasso, Logistic Regression Murphy 6.4-6.5, 8.1-8.3, 8.5 13.1, 13.3 - 13.4.1
  Optional: HTF 3
Lasso Slides (Kevin), Annotated Lasso Slides (Kevin), Logistic Regression Slides
Classification, Optimization
4/22 Logistic Regression Murphy 8.1-8.3, 8.5
Roughgarden-Valiant notes
  Optional: Gradient descent algorithms by Ruder
  Optional: Zen of gradient descent by Moritz Hardt
  Optional: HTF 4.1-4.2, 4.4
Annotated Slides
4/27 Logistic Regression, Optimization basics Murphy 8.1-8.3, 8.5
Roughgarden-Valiant notes
  Optional: Gradient descent algorithms by Ruder
  Optional: Zen of gradient descent by Moritz Hardt
  Optional: HTF 4.1-4.2, 4.4
Slides, Annotated Slides
4/29 SGD and computation Daume 4, 11, Murphy 8.5.0
Murphy 14.5
  Optional: HTF 4.5, 12-12.2;
  Optional: HTF 4.1-4.3.1, 18.7; EH 2-2.2, 10-10.4, 11-11.2
Slides (Kevin), Annotated Slides (Kevin)
Online Learning and Margin-based Approaches
5/4 SVMs and Kernels (Jamie) Daume 4, 11, Murphy 8.5.0, 8.5.4
Murphy 14.5
  Optional: HTF 4.5, 12-12.2;
  Optional: HTF 4.1-4.3.1, 18.7; EH 2-2.2, 10-10.4, 11-11.2
Slides, Annotated Slides
5/6 Neural Networks Murphy 28
  Optional: HTF 11
Dive into Deep Learning, Zhang et al
https://playground.tensorflow.org/
Slides (Jamie), Slides (Kevin), Annotated Slides (Kevin)
Unsupervised Learning
5/11 Nearest neighbors, Bootstrap (Kevin), K-means and PCA (Jamie) HTF 2.3-2.5, 7.11, 8.2
Murphy 6.1-6.3, 12.1.0, 12.2
PCA-1 and PCA-2 notes by Roughgarden and Valiant
Daume, chapter 15
  Optional: HTF 5.9, 12.3; 14.5
Slides (Kevin), Slides (Jamie)
5/13 K-means and PCA Slides Annotated Slides
5/18 PCA, SVD, and EM Daume, chapter 16
Bishop, Sections 9.2-9.4
  Optional: HTF 8.5
Slides (Jamie), Annotated Slides (Jamie)
5/20 Structured Neural Networks (Kevin) Dive into Deep Learning, Zhang et al
Optional:
Image convolutional networks blog post
Coates and Ng (2012) random patches
Slides (Kevin)
5/27 Hyperparameter tuning (Kevin)
More unsupervised learning (Kevin)
Basic Text processing (Kevin)
Ch. 8-9 of Dive into Deep Learning, Zhang et al
Slides (Kevin), Annotated Slides (Kevin)
6/1 Privacy and Fairness Fairness and machine learning book Slides, Annotated Slides
Other stuff
6/3 Decision trees, Random forests (Kevin)
Boosting (Kevin)
Murphy 16.2
Murphy 16.4
  Optional: HTF 9.2, 15-15.3, 10-10.11

Slides (Kevin), Annotated Slides (Kevin)