
Homework #4

CSE 446/546: Machine Learning

Prof. Kevin Jamieson, Jamie Morgenstern

Due: Friday 06/12/2020 11:59 PM

Please review all homework guidance posted on the website before submitting to Gradescope. Reminders:

• Please provide succinct answers along with succinct reasoning for all your answers. Points may be deducted
if long answers demonstrate a lack of clarity. Similarly, when discussing the experimental results, concisely
create tables and/or figures when appropriate to organize the experimental results. In other words, all
your explanations, tables, and figures for any particular part of a question must be grouped together.

• When submitting to gradescope, please link each question from the homework in gradescope to the location
of its answer in your homework PDF. Failure to do so may result in point deductions. For instructions,
see https://www.gradescope.com/get_started#student-submission.

• Please recall that B problems, indicated in boxed text are only graded for 546 students, and that they
will be weighted at most 0.2 of your final GPA (see website for details). In Gradescope there is a place
to submit solutions to A and B problems separately. You are welcome to create just a single PDF that
contains answers to both, submit the same PDF twice, but associate the answers with the individual
questions in gradescope.

• If you collaborate on this homework with others, you must indicate who you worked with on your home-
work. Failure to do so may result in accusations of plagiarism.

In the ‘A’ problems on this assignment, you are provided some choice about which subset of problems to
complete. A subset of the problems are color-coded. You may choose one RED problem from {A3, A4
} and one BLUE problem from {A5, A6 } to complete. You do not need to complete both problems of
the same color. Problems of the same color have the same total point value. { A1, A2 } are not optional and
should be completed by all students.

Conceptual Questions

A1. The answers to these questions should be answerable without referring to external materials. Briefly justify
your answers with a few words.

a. [2 points] True or False: Training deep neural networks requires minimizing a non-convex loss function,
and therefore gradient descent might not reach the globally-optimal solution.

b. [2 points] True or False: It is a good practice to initialize all weights to zero when training a deep neural
network.

c. [2 points] True or False: We use non-linear activation functions in a neural network’s hidden layers so
that the network learns non-linear decision boundaries.

d. [2 points] True or False: Given a neural network, the time complexity of the backward pass step in the
backpropagation algorithm can be prohibitively larger compared to the relatively low time complexity of
the forward pass step.

e. [2 points] True or False: Autoencoders, where the encoder and decoder functions are both neural networks
with nonlinear activations, can capture more variance of the data in its encoded representation than PCA
using the same number of dimensions.

1

https://www.gradescope.com/get_started#student-submission

Think before you train

A2. In class, we discussed some of the ways in which many datasets describing crime have various shortcomings
in describing the entire landscape of illegal behavior in a city, and that these shortcomings often fall dispro-
portionately on minority communities. Some examples include that crimes are reported at different rates in
different neighborhoods, that police respond differently to the same crime reported or observed in different
neighborhoods, and that police spend more time patrolling in some neighborhoods than others.

a. [5 points] Please describe two statistical problems arising from one or more of these issues (or others
mentioned in class, or others from some other source that you cite relating to datasets compiled related
to crime in the US), and what real-world implications might follow from ignoring these issues. A short
paragraph for each statistical problem suffices.

b. [5 points] For each of your previously identified statistical concerns above, propose a technical “fix” (e.g.
a new sampling strategy, some training method for which few or no distributional assumptions are needed
on the training set).

c. [5 points] The solutions you described in (b) might only take you so far towards ensuring a model has
similarly positive impact on different communities. Describe two reasons why a machine learning model
trained to predict f(x) from x might have different accuracy on two different populations, even if the
training data is drawn i.i.d. from the true distribution over the event of interest. [These assumptions
exclude the possibility that the two populations are sampled from at rates different from their latent
frequency, though their latent frequencies may be different.]

Unsupervised Learning with Autoencoders

A3. Last homework we used PCA to project and reconstruct data from the MNIST dataset. In this exercise,
we will train two simple autoencoders to perform dimensionality reduction on MNIST. As discussed in lecture,
autoencoders are a long-studied neural network architecture comprised of an encoder component to summarize
the latent features of input data and a decoder component to try and reconstruct the original data from the
latent features.

Weight Initialization and PyTorch

Last assignment, we had you refrain from using torch.nn modules. For this assignment, we recommend using
nn.Linear for your linear layers. You will not need to initialize the weights yourself; the default He/Kaiming
uniform initialization in PyTorch will be sufficient for this problem. Hint: we also recommend using the
nn.Sequential module to organize your network class and simplify the process of writing the forward pass.

Training

Use optim.Adam for this question. Experiment with different learning rates. Use mean squared error (nn.MSELoss()
or F.mse loss()) for the loss function and ReLU for the non-linearity in b.

a. [10 points] Use a network with a single linear layer. Let We ∈ Rh×d and Wd ∈ Rd×h. Given some x ∈ Rd,
the forward pass is formulated as

F1(x) = WdWex.

Run experiments for h ∈ {32, 64, 128}. For each of the different h values, report your final error and
visualize a set of 10 reconstructed digits, side-by-side with the original image. Note: we omit the bias
term in the formulation for notational convenience since nn.Linear learns bias parameters alongside
weight parameters by default.

b. [10 points] Use a single-layer network with non-linearity. Let We ∈ Rh×d, Wd ∈ Rd×h, and activation
σ : R 7−→ R. Given some x ∈ Rd, the forward pass is formulated as

F2(x) = σ(Wdσ(Wex)).

Report the same findings as asked for in part a (for h ∈ {32, 64, 128}.

2

c. [5 points] Now, evaluate F1(x) and F2(x) (use h = 128 here) on the test set. Provide the test reconstruction
errors in a table.

d. [5 points] In a few sentences, compare the quality of the reconstructions from these two autoencoders
compare with those of PCA from last assignment. You may want to re-run your code for PCA using the
different h values as the number of top-k eigenvalues.

Using Pretrained Networks and Transfer Learning

A4. So far we have trained very small neural networks from scratch. As mentioned in the previous problem,
modern neural networks are much larger and more difficult to train and validate. In practice, it is rare to train
such large networks from scratch. This is because it is difficult to obtain both the massive datasets and the
computational resources required to train such networks.

Instead of training a network from scratch, in this problem, we will use a network that has already been trained
on a very large dataset (ImageNet) and adjust it for the task at hand. This process of adapting weights in a
model trained for another task is known as transfer learning.

• Begin with the pretrained AlexNet model from torchvision.models for both tasks below. AlexNet
achieved an early breakthrough performance on ImageNet and was instrumental in sparking the deep
learning revolution in 2012.

• Do not modify any module within AlexNet that is not the final classifier layer.

• The output of AlexNet comes from the 6th layer of the classifier. Specifically, model.classifer[6] =

nn.Linear(4096, 1000). To use AlexNet with CIFAR-10, we will reinitialize (replace) this layer with
nn.Linear(4096, 10). This re-initializes the weights, and changes the output shape to reflect the desired
number of target classes in CIFAR-10.

We will explore two different ways to formulate transfer learning.

a. [15 points] Use AlexNet as a fixed feature extractor: Add a new linear layer to replace the existing
classification layer, and only adjust the weights of this new layer (keeping the weights of all other layers
fixed). Provide plots for training loss and validation loss over the number of epochs. Report the highest
validation accuracy achieved. Finally, evaluate the model on the test data and report both the accuracy
and the loss.

When using AlexNet as a fixed feature extractor, make sure to freeze all of the parameters in the network
before adding your new linear layer:

model = torchvision.models.alexnet(pretrained=True)

for param in model.parameters():

param.requires_grad = False

model.classifier[6] = nn.Linear(4096, 10)

b. [15 points] Fine-Tuning: The second approach to transfer learning is to fine-tune the weights of the pre-
trained network, in addition to training the new classification layer. In this approach, all network weights
are updated at every training iteration; we simply use the existing AlexNet weights as the “initialization”
for our network (except for the weights in the new classification layer, which will be initialized using
whichever method is specified in the constructor) prior to training on CIFAR-10. Following the same
procedure, report all the same metrics and plots as in the previous question.

3

Image Classification on CIFAR-10

A5. In this problem we will explore different deep learning architectures for image classification on the CIFAR-
10 dataset. If you are not comfortable with PyTorch from the previous lecture and discussion materials, the
following tutorials at http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html may be
useful:

• What is PyTorch?

• Autograd: automatic differentiation

• Neural Networks

• Training a classifier

After completing them, you should be familiar with tensors, two-dimensional convolutions (nn.Conv2d) and
fully-connected layers (nn.Linear), ReLU non-linearities (F.relu), pooling (nn.MaxPool2d), and tensor re-
shaping (view).

The final tutorial, in particular, will leave you with a network for classifying the CIFAR-10
dataset. This network is used as the starting point for this problem. You will construct a number
of different network architectures and compare their performance. For all, it is highly recommended that you
copy and modify the existing network code produced in the tutorial Training a classifier. You should not be
coding this network from scratch!

A few preliminaries:

• Each network f maps an image xin ∈ R32×32×3 (3 channels for RGB) to an output f(xin) = xout ∈ R10.
The class label is predicted as arg maxi=0,1,...,9 x

out
i . An error occurs if the predicted label differs from the

true label for a given image.

• The network is trained via multiclass cross-entropy loss.

• Create a validation dataset by appropriately partitioning the train dataset. Hint : look at the documenta-
tion for torch.utils.data.random split. Make sure to tune hyperparameters like network architecture
and step size on the validation dataset. Do NOT validate your hyperparameters on the test dataset.

• Modify the training code such that at the end of each epoch (one pass over the training data) it computes
and prints the training and test classification accuracy (you may find the running calculation that the
code initially uses useful to calculate the training accuracy).

• While one would usually train a network for hundreds of epochs to reach convergence and maximize
accuracy, this can be prohibitively time-consuming, so feel free to train for just a dozen or so epochs.

For all of the following, apply a hyperparameter tuning method (grid search, random search, etc.) using the
validation set, report the hyperparameter configurations you evaluated and the best set of hyperparameters
from this set, and plot the training and validation classification accuracy as a function of iteration. Produce
a separate line or plot for each hyperparameter configuration evaluated. Finally, evaluate your best set of
hyperparameters on the test data and report the accuracy. On the larger networks, you should expect
to tune hyperparameters and train to at least 70% accuracy.

Here are the network architectures you will construct and compare.

a. [15 points] Fully-connected output, 0 hidden layers (logistic regression): this network has no
hidden layers and linearly maps the input layer to the output layer. This can be written as

xout = Wvec(xin) + b

where xout ∈ R10, xin ∈ R32×32×3, W ∈ R10×3072, b ∈ R10 since 3072 = 32 · 32 · 3. For a tensor
x ∈ Ra×b×c, we let vec(x) ∈ Rabc be the reshaped form of the tensor into a vector (in an arbitrary but
consistent pattern).

4

http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

b. [15 points] Fully-connected output, 1 fully-connected hidden layer: this network has one hidden
layer denoted as xhidden ∈ RM whereM will be a hyperparameter you choose (M could be in the hundreds).
The nonlinearity applied to the hidden layer will be the relu (relu(x) = max{0, x}. This network can be
written as

xout = W2relu(W1vec(xin) + b1) + b2

where W1 ∈ RM×3072, b1 ∈ RM , W2 ∈ R10×M , b2 ∈ R10.

c. [15 points] Convolutional layer with max-pool and fully-connected output: for a convolutional
layer W1 with filters of size k × k × 3, and M filters (reasonable choices are M = 100, k = 5), we have
that Conv2d(xin,W1) ∈ R(33−k)×(33−k)×M .

• Each convolution will have its own offset applied to each of the output pixels of the convolution; we
denote this as Conv2d(xin,W) + b1 where b1 is parameterized in RM . Apply a relu activation to
the result of the convolutional layer.

• Next, use a max-pool of size N ×N (a reasonable choice is N = 14 to pool to 2× 2 with k = 5) we

have that MaxPool(relu(Conv2d(xin,W1) + b1)) ∈ Rb
33−k

N c×b 33−k
N c×M .

• We will then apply a fully-connected layer to the output to get a final network given as

xoutput = W2vec(MaxPool(relu(Conv2d(xinput,W1) + b1))) + b2

where W2 ∈ R10×M(b 33−k
N c)2 , b2 ∈ R10.

The parameters M,k,N (in addition to the step size and momentum) are all hyperparameters, but you
can choose a reasonable value. Tuning can be performed in the next subproblem.

d. [5 points] Tuning: Return to the original network you were left with at the end of the tutorial Training a
classifier. Tune the different hyperparameters (number of convolutional filters, filter sizes, dimensionality
of the fully-connected layers, stepsize, etc.) and train for a sufficient number of iterations to achieve a test
accuracy of at least 70%. Provide the hyperparameter configuration used to achieve this performance.

The number of hyperparameters to tune in the last exercise, combined with the slow training times, will
hopefully give you a taste of how difficult it is to construct networks with good generalization performance.
State-of-the-art networks can have dozens of layers, each with their own hyperparameters to tune. Additional
hyperparameters you are welcome to play with if you are so inclined, include: changing the activation function,
replace max-pool with average-pool, and experimenting with batch normalization or dropout.

5

Text classification on SST-2

A6. The Stanford Sentiment Treebank (SST-2) is a dataset of movie reviews. Each review is annotated with a
label indicating whether the sentiment of the review is positive or negative. Below are some examples from the
dataset. Note that often times the reviews are only partial sentences or even single words.

Sequence Sentiment

is one big , dumb action movie . Negative
perfectly executed and wonderfully sympathetic characters , Positive
until then there ’s always these rehashes to feed to the younger generations Negative
is like nothing we westerners have seen before . Positive

In this problem you will use a Recurrent Neural Network (RNN) for classifying reviews as either Positive (1) or
Negative (0).

Using an RNN for binary classification

Above is a simplified visualization of the RNN you will be building. Each token of the input sequence (CSE, 446,
. . .) is fed into the network sequentially. Note that in reality, we convert each token to some integer index. But
training with discrete values does not work well, so we also ”embed” the words in a high-dimensional continuous
space. We already provided an nn.Embedding layer to you to do this. Each RNN cell (squares above) generates
a hidden state hi. We then feed the last hidden state into a simple fully-connected layer, which then produces
a single prediction between 0 and 1.

Setup

1. Download the GloVe embeddings from http://nlp.stanford.edu/data/glove.6B.zip. Extract the zip
file and move the file glove.6B.50d.txt into the same folder as the starter code (util.py, train.py,

hw4 a6.py).

2. Download the SST-2 dataset from here https://gluebenchmark.com/tasks (Click on download next to
The Stanford Sentiment Treebank). Extract the zip file into the same folder as above.

You only need to modify hw4 a6.py, however you are free to also modify the other two files. You will only
submit hw4 a6.py, but if you make changes to the other files you should also include them in your submission.

Problems

a. [10 points] In Natural Language Processing (NLP), we usually have to deal with variable length data. In
SST-2, each data point corresponds to a review, and reviews often have different lengths. The issue is
that to efficiently train a model with textual data, we need to create batches of data that are fixed size
matrices. In order to store a batch of sequences in a single matrix, we add padding to shorter sequences
so that each sequence has the same length. Given a list of N sequences, we:

1. Find the length of the longest sequence in the batch, call it max sequence length

6

http://nlp.stanford.edu/data/glove.6B.zip
https://gluebenchmark.com/tasks

2. Append padding tokens to the end of each sequence so that each sequence has length max sequence length

3. Stack the sequences into a matrix of size (N, max sequence length)

In this process, words are mapped to integer ids, so in the above process we actually store integers rather
than strings. For the padding token, we simply use id 0. In the file hw4 a6.py, fill out collate fn to
perform the above batching process. Details are provided in the comment of the function.

b. [15 points] Implement the constructor and forward method for RNNBinaryClassificationModel. You
will use three different types of recurrent neural networks: the vanilla RNN (nn.RNN), Long Short-Term
Memory (nn.LSTM) and Gated Recurrent Units (nn.GRU). For the hidden size, use 64 (Usually this is a
hyperparameter you need to tune). We have already provided you with the embedding layer to turn token
indices into continuous vectors of size 50, but you will need a linear layer to transform the last hidden
state of the recurrent layer to a shape that can be interpreted as a label prediction. The code for each of
the three networks will only differ by the recurrent layer you use. In your code submission, use any of the
three layers.

c. [5 points] Implement the loss method of RNNBinaryClassificationModel, which should compute the
binary cross-entropy loss between the predictions and the target labels. Also implemented the accuracy

method, which given the predictions and the target labels should return the accuracy.

d. [15 points] We have already provided all of the data loading, training and validation code for you. Choose
an appropriate batch size, learning rate and number of epochs and set the constants TRAINING BATCH SIZE,
NUM EPOCHS, LEARNING RATE accordingly. With a good learning rate, you shouldn’t have to train for more
than 16 epochs. Report your best validation loss and corresponding validation accuracy, corresponding
training loss and training accuracy for each of the three types of recurrent neural networks.

e. [5 points] Currently we are only using the final hidden state of the RNN to classify the entire sequence
as being either positive or negative sentiment. But can we make use of the other hidden states? Suppose
you wanted to use the same architecture for a related task called tagging. For tagging, the goal is to
predict a tag for each token of the sequence. For instance, we might want predict the part of speech tag
(verb, noun, adjective etc.) of each token. In a few sentences, describe how you would modify the current
architecture to predict a tag for each token.

f. (Extra Credit: [1 points]) When you run training, the model will print out 8 random reviews. What is
the funniest review you have encountered after running the code a few times?

7

Matrix Completion and Recommendation System

B1. You will build a personalized movie recommender system. We will use the 100K MovieLens dataset
available at https://grouplens.org/datasets/movielens/100k/. There are m = 1682 movies and n =
943 users. Each user rated at least 20 movies, but some watched many more. The total dataset contains
100, 000 total ratings from all users. The goal is to recommend movies the users haven’t seen.
Consider a matrix R ∈ Rm×n where the entry Ri,j ∈ {1, . . . , 5} represents the jth user’s rating on movie
i. A higher value represents that the user is more satisfied with the movie.

We may think of our historical data as some observed entries of this matrix while many remain unknown,
and we wish to estimate the unknown ratings that each user would assign to each movie. We could use
these ratings to recommend the “best” movies for each user.

The dataset contains user and movie metadata which we will ignore. We strictly use the ratings contained
in the u.data file. Use this data file and the following python code to construct a training and test set:

import csv

import numpy as np

data = []

with open(’u.data’) as csvfile:

spamreader = csv.reader(csvfile, delimiter=’\t’)

for row in spamreader:

data.append([int(row[0])-1, int(row[1])-1, int(row[2])])

data = np.array(data)

num_observations = len(data) # num_observations = 100,000

num_users = max(data[:,0])+1 # num_users = 943, indexed 0,...,942

num_items = max(data[:,1])+1 # num_items = 1682 indexed 0,...,1681

np.random.seed(1)

num_train = int(0.8*num_observations)

perm = np.random.permutation(data.shape[0])

train = data[perm[0:num_train],:]

test = data[perm[num_train::],:]

The arrays train and test contain Rtrain and Rtest, respectively. Each line takes the form “j, i, s”, where
j is the user index, i is the movie index, and s is the user’s score.

Using train, you will train a model that can predict R̂ ∈ Rm×n, how every user would rate every movie.
You will evaluate your model based on the average squared error on test:

Etest(R̂) =
1

|test|
∑

(i,j,Ri,j)∈test

(R̂i,j −Ri,j)
2.

Low-rank matrix factorization is a baseline method for personalized recommendation. It learns a vector
representation ui ∈ Rd for each movie and a vector representation vj ∈ Rd for each user, such that the
inner product 〈ui, vj〉 approximates the rating Ri,j . You will build a simple latent factor model.

You will implement multiple estimators and use the inner product 〈ui, vj〉 to predict if user j likes movie
i in the test data. For simplicity, we will put aside best practices and choose hyperparameters by using
those that minimize the test error. You may use fundamental operators from numpy or pytorch in this
problem (numpy.linalg.lstsq, SVD, autograd, etc.) but not any precooked algorithm from a package

8

https://grouplens.org/datasets/movielens/100k/

like scikit-learn. If there is a question whether some package is not allowed for use in this problem, it
probably is not appropriate.

a. [5 points] Our first estimator pools all users together and, for each movie, outputs as its prediction
the average user rating of that movie in train. That is, if µ ∈ Rm is a vector where µi is the average
rating of the users that rated the ith movie, write this estimator R̂ as a rank-one matrix.
Compute the estimate R̂. What is Etest(R̂) for this estimate?

b. [5 points] Allocate a matrix R̃i,j ∈ Rm×n and set its entries equal to the known values in the

training set, and 0 otherwise. Let R̂(d) be the best rank-d approximation (in terms of squared error)

approximation to R̃. This is equivalent to computing the singular value decomposition (SVD) and
using the top d singular values. This learns a lower-dimensional vector representation for users and
movies, assuming that each user would give a rating of 0 to any movie they have not reviewed.

• For each d = 1, 2, 5, 10, 20, 50, compute the estimator R̂(d). We recommend using an efficient
solver such as scipy.sparse.linalg.svds.

• Plot the average squared error of predictions on the training set and test set on a single plot, as
a function of d.

Note that, in most applications, we would not actually allocate a full m × n matrix. We do so here
only because our data is relatively small and it is instructive.

c. [10 points] Replacing all missing values by a constant may impose strong and potentially incorrect
assumptions on the unobserved entries of R. A more reasonable choice is to minimize the MSE (mean
squared error) only on rated movies. Define a loss function:

L
(
{ui}mi=1, {vj}nj=1

)
:=

∑
(i,j,Ri,j)∈train

(〈ui, vj〉 −Ri,j)
2 + λ

m∑
i=1

‖ui‖22 + λ

n∑
j=1

‖vj‖22 (1)

where λ > 0 is the regularization coefficient. We will implement algorithms to learn vector represen-
tations by minimizing (1).

Since this is a non-convex optimization problem, the initial starting point and hyperparameters may
affect the quality of R̂. You may need to tune λ and σ to optimize the loss you see.

• Alternating minimization: First, randomly initialize {ui} and {vj}. Then, alternatate between
(1) minimizing the loss function with respect to {ui} by treating {vj} as fixed; and (2) minimizing
the loss function with respect to {vj} by treating {ui} as fixed. Repeat (1) and (2) until both
{ui} and {vj} converge. Note that when one of {ui} or {vj} is given, minimizing the loss function
with respect to the other part has a closed-form solution.

• Try d ∈ {1, 2, 5, 10, 20, 50} and plot the mean squared error of train and test as a function of d.

Some hints: Common choices for initializing the vectors {ui}mi=1, {vj}nj=1 include: entries drawn from
np.random.rand() scaled by some scale factor σ > 0 (σ is an additional hyperparameter), or using
one of the solutions from part b or c. You should never be allocating an m×n matrix for this problem.

d. [10 points] Repeat part c, using batched SGD rather than alternating minimization.

Stochastic Gradient Descent : First, randomly initialize {ui} and {vj}. Then take a batch of random
samples (of size b from your training set and compute a gradient step, and repeat until convergence.

Note that batch size b, regularization constant λ, scaling parameter σ and learning rate η are all
hyperparameters. Since this is a non-convex optimization, the results may be quite sensitive to these
hyperparameters and to the initialization.

9

One strategy for choosing η is to select the largest constant value such that the loss L still tends to
decrease. Another strategy is to pick a relatively large value of η and then scale it by some factor
β ∈ (0, 1) so that η 7→ βη every time a number of examples are seen that exceeds the size of the
training set.

Feel free to modify the loss function to, say, different regularizers if it helps reduce the test error. See
http://www.optimization-online.org/DB_FILE/2011/04/3012.pdf for some ideas.

e. [5 points] Briefly, in words, compare the results of the prior two parts. This is an example where the
loss functions are identical, but the algorithm used has drastic impact on how much the model fits,
overfits, or generalizes to new, unseen data.

f. (Extra credit: [5 points]). Implement any algorithm you’d like (you must implement it yourself; do
not use an off-the-shelf algorithm from e.g. scikit-learn) to find an estimator that achieves a test
error of no more than 0.9. Please include your code.

10

http://www.optimization-online.org/DB_FILE/2011/04/3012.pdf

