
Homework #2

CSE 446/546: Machine Learning

Prof. Kevin Jamieson and Prof. Jamie Morgenstern

Due: Tuesday May 12, 2020 11:59 PM

Please review all homework guidance posted on the website before submitting to Gradescope. Reminders:

• Please provide succinct answers along with succinct reasoning for all your answers. Points may be deducted
if long answers demonstrate a lack of clarity. Similarly, when discussing the experimental results, concisely
create tables and/or figures when appropriate to organize the experimental results. In other words, all
your explanations, tables, and figures for any particular part of a question must be grouped together.

• When submitting to gradescope, please link each question from the homework in gradescope to the location
of its answer in your homework PDF. Failure to do so may result in point deductions. For instructions,
see https://www.gradescope.com/get_started#student-submission.

• Please recall that B problems, indicated in boxed text are only graded for 546 students, and that they
will be weighted at most 0.2 of your final GPA (see website for details). In Gradescope there is a place
to submit solutions to A and B problems seperately. You are welcome to create just a single PDF that
contains answers to both, submit the same PDF twice, but associate the answers with the individual
questions in gradescope.

• If you collaborate on this homework with others, you must indicate who you worked with on your home-
work. Failure to do so may result in accusations of plagiarism.

Conceptual Questions [10 points]

A0. The answers to these questions should be answerable without referring to external materials. Briefly justify
your answers with a few words.

a. [2 points] Suppose that your estimated model for predicting house prices has a large positive weight on
’number of bathrooms’. Does it implies that if we remove the feature ”number of bathrooms” and refit
the model, the new predictions will be strictly worse than before? Why?

b. [2 points] Compared to L2 norm penalty, explain why a L1 norm penalty is more likely to result in a
larger number of 0s in the weight vector or not?

c. [2 points] In at most one sentence each, state one possible upside and one possible downside of using the

following regularizer:
(∑

i |wi|
0.5
)

d. [1 points] True or False: If the step-size for gradient descent is too large, it may not converge.

e. [2 points] In your own words, describe why SGD works.

f. [2 points] In at most one sentence each, state one possible advantage of SGD (stochastic gradient descent)
over GD (gradient descent) and one possible disadvantage of SGD relative to GD.

1

https://www.gradescope.com/get_started#student-submission

Convexity and Norms [30 points]

A1. A norm ‖ · ‖ over Rn is defined by the properties: i) non-negative: ‖x‖ ≥ 0 for all x ∈ Rn with equality
if and only if x = 0, ii) absolute scalability: ‖a x‖ = |a| ‖x‖ for all a ∈ R and x ∈ Rn, iii) triangle inequality:
‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn.

a. [3 points] Show that f(x) = (
∑n
i=1 |xi|) is a norm. (Hint: begin by showing that |a+ b| ≤ |a|+ |b| for all

a, b ∈ R.)

b. [2 points] Show that g(x) =
(∑n

i=1 |xi|1/2
)2

is not a norm. (Hint: it suffices to find two points in n = 2
dimensions such that the triangle inequality does not hold.)

Context: norms are often used in regularization to encourage specific behaviors of solutions. If we define

‖x‖p := (
∑n
i=1 |xi|p)

1/p
then one can show that ‖x‖p is a norm for all p ≥ 1. The important cases of p = 2 and

p = 1 correspond to the penalty for ridge regression and the lasso, respectively.

B1. [6 points] For any x ∈ Rn, define the following norms: ‖x‖1 =
∑n
i=1 |xi|, ‖x‖2 =

√∑n
i=1 |xi|2,

‖x‖∞ := limp→∞ ‖x‖p = maxi=1,...,n |xi|. Show that ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.

A2. [3 points] A set A ⊆ Rn is convex if λx+ (1− λ)y ∈ A for all x, y ∈ A and λ ∈ [0, 1].

For each of the grey-shaded sets above (I-III), state whether each one is convex, or state why it is not convex
using any of the points a, b, c, d in your answer.

A3. [4 points] We say a function f : Rd → R is convex on a set A if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for
all x, y ∈ A and λ ∈ [0, 1].

For each of the grey-colored functions below (I-III), state whether each one is convex on the given interval or
state why not with a counterexample using any of the points a, b, c, d in your answer.

a. Function in panel I on [a, c]

b. Function in panel II on [a, c]

c. Function in panel III on [a, d]

d. Function in panel III on [c, d]

2

B2. Use just the definitions above and let ‖ · ‖ be a norm.

a. [3 points] Show that f(x) = ‖x‖ is a convex function.

b. [3 points] Show that {x ∈ Rn : ‖x‖ ≤ 1} is a convex set.

c. [2 points] Draw a picture of the set {(x1, x2) : g(x1, x2) ≤ 4} where g(x1, x2) =
(
|x1|1/2 + |x2|1/2

)2
.

(This is the function considered in 1b above specialized to n = 2.) We know g is not a norm. Is the
defined set convex? Why not?

Context: It is a fact that a function f defined over a set A ⊆ Rn is convex if and only if the set {(x, z) ∈
Rn+1 : z ≥ f(x), x ∈ A} is convex. Draw a picture of this for yourself to be sure you understand it.

B3. For i = 1, . . . , n let `i(w) be convex functions over w ∈ Rd (e.g., `i(w) = (yi − w>xi)2), ‖ · ‖ is any
norm, and λ > 0.

a. [3 points] Show that

n∑
i=1

`i(w) + λ‖w‖

is convex over w ∈ Rd (Hint: Show that if f, g are convex functions, then f(x) + g(x) is also convex.)

b. [1 points] Explain in one sentence why we prefer to use loss functions and regularized loss functions
that are convex.

Lasso [45 points]

Given λ > 0 and data (x1, y1), . . . , (xn, yn), the Lasso is the problem of solving

arg min
w∈Rd,b∈R

n∑
i=1

(xTi w + b− yi)2 + λ

d∑
j=1

|wj |

λ is a regularization tuning parameter. For the programming part of this homework, you are required to
implement the coordinate descent method of Algorithm 1 that can solve the Lasso problem.
You may use common computing packages (such as NumPy or SciPy), but do not use an existing Lasso solver
(e.g., of scikit-learn).
Before you get started, here are some hints that you may find helpful:

Algorithm 1: Coordinate Descent Algorithm for Lasso

while not converged do

b← 1
n

∑n
i=1

(
yi −

∑d
j=1 wjxi,j

)
for k ∈ {1, 2, · · · d} do

ak ← 2
∑n
i=1 x

2
i,k

ck ← 2
∑n
i=1 xi,k

(
yi − (b+

∑
j 6=k wjxi,j)

)
wk ←

 (ck + λ)/ak ck < −λ
0 ck ∈ [−λ, λ]
(ck − λ)/ak ck > λ

end

end

3

• For-loops can be slow whereas vector/matrix computation in Numpy is very optimized; exploit this as
much as possible.

• The pseudocode provided has many opportunities to speed up computation by precomputing quantities
like ak before the for loop. These small changes can speed things up considerably.

• As a sanity check, ensure the objective value is nonincreasing with each step.

• It is up to you to decide on a suitable stopping condition. A common criteria is to stop when no element
of w changes by more than some small δ during an iteration. If you need your algorithm to run faster, an
easy place to start is to loosen this condition.

• You will need to solve the Lasso on the same dataset for many values of λ. This is called a regularization
path. One way to do this efficiently is to start at a large λ, and then for each consecutive solution, initialize
the algorithm with the previous solution, decreasing λ by a constant ratio (e.g., by a factor of 2) until
finished.

• The smallest value of λ for which the solution ŵ is entirely zero is given by

λmax = max
k=1,...,d

2

∣∣∣∣∣∣
n∑
i=1

xi,k

yi −
 1

n

n∑
j=1

yj

∣∣∣∣∣∣
This is helpful for choosing the first λ in a regularization path.

A4. We will first try out your solver with some synthetic data. A benefit of the Lasso is that if we believe
many features are irrelevant for predicting y, the Lasso can be used to enforce a sparse solution, effectively
differentiating between the relevant and irrelevant features. Suppose that x ∈ Rd, y ∈ R, k < d, and pairs of
data (xi, yi) for i = 1, . . . , n are generated independently according to the model yi = wTxi + εi where

wj =

{
j/k if j ∈ {1, . . . , k}
0 otherwise

where εi ∼ N (0, σ2) is some Gaussian noise (in the model above b = 0). Note that since k < d, the features
k + 1 through d are unnecessary (and potentially even harmful) for predicting y.
With this model in mind, let n = 500, d = 1000, k = 100, and σ = 1. Generate some data by choosing xi ∈ Rd,
where each component is drawn from a N (0, 1) distribution and yi generated as specified above.

a. [10 points] With your synthetic data, solve multiple Lasso problems on a regularization path, starting at
λmax where 0 features are selected and decreasing λ by a constant ratio (e.g., 1.5) until nearly all the
features are chosen. In plot 1, plot the number of non-zeros as a function of λ on the x-axis (Tip: use
plt.xscale(’log’)).

b. [10 points] For each value of λ tried, record values for false discovery rate (FDR) (number of incorrect
nonzeros in ŵ/total number of nonzeros in ŵ) and true positive rate (TPR) (number of correct nonzeros
in ŵ/k). In plot 2, plot these values with the x-axis as FDR, and the y-axis as TPR and note that in an
ideal situation we would have an (FDR,TPR) pair in the upper left corner, but that can always trivially
achieve (0, 0) and (d−kd , 1).

c. [5 points] Comment on the effect of λ in these two plots.

A5. Now we put the Lasso to work on some real data. Download the training data set “crime-train.txt” and the
test data set “crime-test.txt” from the website under Homework 2. Store your data in your working directory
and read in the files with:

import pandas as pd

df_train = pd.read_table("crime-train.txt")

df_test = pd.read_table("crime-test.txt")

4

This stores the data as Pandas DataFrame objects. DataFrames are similar to Numpy arrays but more flexible;
unlike Numpy arrays, they store row and column indices along with the values of the data. Each column of
a DataFrame can also, in principle, store data of a different type. For this assignment, however, all data are
floats. Here are a few commands that will get you working with Pandas for this assignment:

df.head() # Print the first few lines of DataFrame df.

df.index # Get the row indices for df.

df.columns # Get the column indices.

df[‘‘foo’’’] # Return the column named ‘‘foo’’’.

df.drop(‘‘foo’’, axis = 1) # Return all columns except ‘‘foo’’.

df.values # Return the values as a Numpy array.

df[‘‘foo’’’].values # Grab column foo and convert to Numpy array.

df.iloc[:3,:3] # Use numerical indices (like Numpy) to get 3 rows and cols.

The data consist of local crime statistics for 1,994 US communities. The response y is the crime rate. The name
of the response variable is ViolentCrimesPerPop, and it is held in the first column of df train and df test.
There are 95 features. These features include possibly relevant variables such as the size of the police force or
the percentage of children that graduate high school. The data have been split for you into a training and test
set with 1,595 and 399 entries, respectively1.

We’d like to use this training set to fit a model which can predict the crime rate in new communities and
evaluate model performance on the test set. As there are a considerable number of input variables, overfitting
is a serious issue. In order to avoid this, use the coordinate descent LASSO algorithm you just implemented in
the previous problem.

Begin by running the LASSO solver with λ = λmax defined above. For the initial weights, just use 0. Then, cut
λ down by a factor of 2 and run again, but this time pass in the values of ŵ from your λ = λmax solution as
your initial weights. This is faster than initializing with 0 weights each time. Continue the process of cutting λ
by a factor of 2 until the smallest value of λ is less than 0.01. For all plots use a log-scale for the λ dimension
(Tip: use plt.xscale(’log’)).

a. [4 points] Plot the number of nonzeros of each solution versus λ.

b. [4 points] Plot the regularization paths (in one plot) for the coefficients for input variables agePct12t29,
pctWSocSec, pctUrban, agePct65up, and householdsize.

c. [4 points] Plot the squared error on the training and test data versus λ.

d. [4 points] Sometimes a larger value of λ performs nearly as well as a smaller value, but a larger value will
select fewer variables and perhaps be more interpretable. Inspect the weights (on features) for λ = 30.
Which feature variable had the largest (most positive) Lasso coefficient? What about the most negative?
Discuss briefly. A description of the variables in the data set can be found here: http://archive.ics.

uci.edu/ml/machine-learning-databases/communities/communities.names.

e. [4 points] Suppose there was a large negative weight on agePct65up and upon seeing this result, a politician
suggests policies that encourage people over the age of 65 to move to high crime areas in an effort to reduce
crime. What is the (statistical) flaw in this line of reasoning? (Hint: fire trucks are often seen around
burning buildings, do fire trucks cause fire?)

Logistic Regression

Binary Logistic Regression [30 points]

A6. Let us again consider the MNIST dataset, but now just binary classification, specifically, recognizing if
a digit is a 2 or 7. Here, let Y = 1 for all the 7’s digits in the dataset, and use Y = −1 for 2. We will use

1The features have been standardized to have mean 0 and variance 1.

5

http://archive.ics.uci.edu/ml/machine-learning-databases/communities/communities.names
http://archive.ics.uci.edu/ml/machine-learning-databases/communities/communities.names

regularized logistic regression. Given a binary classification dataset {(xi, yi)}ni=1 for xi ∈ Rd and yi ∈ {−1, 1}
we showed in class that the regularized negative log likelihood objective function can be written as

J(w, b) =
1

n

n∑
i=1

log(1 + exp(−yi(b+ xTi w))) + λ||w||22

Note that the offset term b is not regularized. For all experiments, use λ = 10−1. Let µi(w, b) = 1
1+exp(−yi(b+xT

i w))
.

a. [8 points] Derive the gradients ∇wJ(w, b), ∇bJ(w, b) and give your answers in terms of µi(w, b) (your
answers should not contain exponentials).

b. [8 points] Implement gradient descent with an initial iterate of all zeros. Try several values of step sizes
to find one that appears to make convergence on the training set as fast as possible. Run until you feel
you are near to convergence.

(i) For both the training set and the test, plot J(w, b) as a function of the iteration number (and show
both curves on the same plot).

(ii) For both the training set and the test, classify the points according to the rule sign(b + xTi w) and
plot the misclassification error as a function of the iteration number (and show both curves on the
same plot).

Note that you are only optimizing on the training set. The J(w, b) and misclassification error plots should
be on separate plots.

c. [7 points] Repeat (b) using stochastic gradient descent with a batch size of 1. Note, the expected gradient
with respect to the random selection should be equal to the gradient found in part (a). Take careful note
of how to scale the regularizer.

d. [7 points] Repeat (b) using stochastic gradient descent with batch size of 100. That is, instead of ap-
proximating the gradient with a single example, use 100. Note, the expected gradient with respect to the
random selection should be equal to the gradient found in part (a).

B4.

Multinomial Logistic Regression[25 points]

We’ve talked a lot about binary classification, but what if we have k > 2 classes, like the 10 digits of
MNIST? Concretely, suppose you have a dataset {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ {1, . . . , k}. Like in
our least squares classifier of homework 1 for MNIST, we will assign a separate weight vector w(`) for each
class ` = 1, . . . , k; let W = [w(1), . . . ,w(k)] ∈ Rd×k. We can generalize the binary classification probabilistic
model to multiple classes as follows: let

PW (yi = `|W,xi) =
exp(w(`) · xi)∑k
j=1 exp(w(j) · xi)

The negative log-likelihood function is equal to

L(W) = −
n∑
i=1

k∑
`=1

1{yi = `} log

(
exp(w(`) · xi)∑k
j=1 exp(w(j) · xi)

)

Define the softmax(·) operator to be the function that takes in a vector θ ∈ Rd and outputs a vector in Rd

whose ith component is equal to exp(θi)∑d
j=1 exp(θj)

. Clearly, this vector is nonnegative and sums to one. If for

any i we have θi � maxj 6=i θj then softmax(θ) approximates ei, a vector of all zeros with a one in the ith
component.
For each yi let yi be the one-hot encoding of yi (i.e., yi ∈ {0, 1}k is a vector of all zeros aside from a 1 in
the yith index).

6

a. [5 points] If ŷ
(W)
i = softmax(W>xi), show that ∇WL(W) = −

∑n
i=1 xi(yi − ŷ

(W)
i)>.

b. [5 points] Recall Ridge Regression on MNIST problem in Homework 1 and define J(W) = 1
2

∑n
i=1 ‖yi−

W>xi‖22. If ỹ
(W)
i = W>xi show that ∇WJ(W) = −

∑n
i=1 xi(yi − ỹ

(W)
i)>. Comparing the least

squares linear regression gradient step of this part to the gradient step of minimizing the negative log
likelihood of the logistic model of part a may shed light on why we call this classification problem
logistic regression.

c. [15 points] Using the original representations of the MNIST flattened images xi ∈ Rd (d = 28× 28 =
764) and all k = 10 classes, implement gradient descent (or stochastic gradient descent) for both
J(W) and L(W) and run until convergence on the training set of MNIST. For each of the two
solutions, report the classification accuracy of each on the training and test sets using the most
natural arg maxj ejW

>xi classification rule.

We highly encourage you to use PyTorch for this problem! The base object in PyTorch is the
torch.tensor, which is essentially a numpy.ndarray but with some powerful new features. Namely,
tensors have accelerator support (GPU, TPU) and high-performance autodifferentiation. Don’t worry
too much about the details of PyTorch! We will discuss PyTorch and the torch.autograd package
in greater detail once we get to neural networks! At a high-level though, torch.autograd allows us
to automatically calculate the gradients of our model parameters with minimal additional cost. Yep,
that’s right! Your days of writing out gradients by hand are numbered! :D

We include some starter pseudocode for the negative log-likelihood + softmax portion of this question.
You are expected to find good hyperparameters. You can install the library at https://pytorch.org/
and access the relevant beginner tutorial here.

import torch

W = torch.zeros(784, 10, requires_grad=True)

for epoch in range(epochs):

y_hat = torch.matmul(X_train, W)

cross entropy combines softmax calculation with NLLLoss

loss = torch.nn.functional.cross_entropy(y_hat, y_train)

computes derivatives of the loss with respect to W

loss.backward()

gradient descent update

W.data = W.data - step_size * W.grad

.backward() accumulates gradients into W.grad instead

of overwriting, so we need to zero out the weights

W.grad.zero_()

7

https://pytorch.org/
https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py

