
Homework #1

CSE 446/546: Machine Learning

Professor Kevin Jamieson and Professor Jamie Morgenstern

Due: 4/24/20 11:59 PM

90 A points, 50 B points

Please review all homework guidance posted on the website before submitting to Gradescope. Reminders:

• Please provide succinct answers along with succinct reasoning for all your answers. Points may be deducted
if long answers demonstrate a lack of clarity. Similarly, when discussing the experimental results, concisely
create tables and/or figures when appropriate to organize the experimental results. In other words, all
your explanations, tables, and figures for any particular part of a question must be grouped together.

• When submitting to gradescope, please link each question from the homework in gradescope to the location
of its answer in your homework PDF. Failure to do so may result in point deductions. For instructions,
see https://www.gradescope.com/get_started#student-submission.

• Please recall that B problems, indicated in boxed text are only graded for 546 students, and that they
will be weighted at most 0.2 of your final GPA (see website for details). In Gradescope there is a place
to submit solutions to A and B problems seperately. You are welcome to create just a single PDF that
contains answers to both, submit the same PDF twice, but associate the answers with the individual
questions in gradescope.

• If you collaborate on this homework with others, you must indicate who you worked with on your home-
work. Failure to do so may result in accusations of plagiarism.

Short Answer and “True or False” Conceptual questions
A.0 The answers to these questions should be answerable without referring to external materials.

• [2 points] In your own words, describe what bias and variance are? What is bias-variance tradeoff?

• [2 points] What happens to bias and variance when the model complexity increases/decreases?

• [1 points] True or False: The bias of a model increases as the amount of training data available increases.

• [1 points] True or False: The variance of a model decreases as the amount of training data available
increases.

• [1 points] True or False: A learning algorithm will generalize better if we use less features to represent our
data

• [2 points] To get better generalization, should we use the train set or the test set to tune our hyperpa-
rameters?

• [1 points] True or False: The training error of a function on the training set provides an overestimate of
the true error of that function.

Maximum Likelihood Estimation (MLE)
A.1. You’re a Reign FC fan, and the team is five games into its 2018 season. The number of goals scored by
the team in each game so far are given below:

[2, 0, 1, 1, 2].

1

Let’s call these scores x1, . . . , x5. Based on your (assumed iid) data, you’d like to build a model to understand
how many goals the Reign are likely to score in their next game. You decide to model the number of goals scored
per game using a Poisson distribution. The Poisson distribution with parameter λ assigns every non-negative
integer x = 0, 1, 2, . . . a probability given by

Poi(x|λ) = e−λ
λx

x!
.

So, for example, if λ = 1.5, then the probability that the Reign score 2 goals in their next game is e−1.5× 1.52

2! ≈
0.25. To check your understanding of the Poisson, make sure you have a sense of whether raising λ will mean
more goals in general, or fewer.

a. [5 points] Derive an expression for the maximum-likelihood estimate of the parameter λ governing the
Poisson distribution, in terms of your goal counts x1, . . . , x5. (Hint: remember that the log of the likelihood
has the same maximum as the likelihood function itself.)

b. [5 points] Suppose the team scores 4 goals in its sixth game. Derive the same expression for the estimate
of the parameter λ as in the prior example, now using the 6 games x1, . . . , x5, x6 = 4.

c. [5 points] Given the goal counts, please give numerical estimates of λ after 5 and 6 games.

A.2. [10 points] In World War 2, the Allies attempted to estimate the total number of tanks the Germans
had manufactured by looking at the serial numbers of the German tanks they had destroyed. The idea was
that if there were n total tanks with serial numbers {1, . . . , n} then its reasonable to expect the observed serial
numbers of the destroyed tanks constituted a uniform random sample (without replacement) from this set. The
exact maximum likelihood estimator for this so-called German tank problem is non-trivial and quite challenging
to work out (try it!). For our homework, we will consider a much easier problem with a similar flavor.
Let x1, . . . , xn be independent, uniformly distributed on the continuous domain [0, θ] for some θ. What is the
Maximum likelihood estimate for θ?

Overfitting

A.3. Suppose we have N labeled samples S = {(xi, yi)}Ni=1 drawn i.i.d. from an underlying distribution D.
Suppose we decide to break this set into a set Strain of size Ntrain and a set Stest of size Ntest samples for our
training and test set, so N = Ntrain +Ntest, and S = Strain∪Stest. Recall the definition of the true least squares
error of f :

ε(f) = E(x,y)∼D[(f(x)− y)2],

where the subscript (x, y) ∼ D makes clear that our input-output pairs are sampled according to D. Our
training and test losses are defined as:

ε̂train(f) =
1

Ntrain

∑
(x,y)∈Strain

(f(x)− y)2

ε̂test(f) =
1

Ntest

∑
(x,y)∈Stest

(f(x)− y)2

We then train our algorithm (for example, using linear least squares regression) using the training set to obtain

f̂ .

a. [3 points] (bias: the test error) For all fixed f (before we’ve seen any data) show that

Etrain[ε̂train(f)] = Etest[ε̂test(f)] = ε(f).

Use a similar line of reasoning to show that the test error is an unbiased estimate of our true error for f̂ .
Specifically, show that:

Etest[ε̂test(f̂)] = ε(f̂)

2

b. [4 points] (bias: the train/dev error) Is the above equation true (in general) with regards to the training

loss? Specifically, does Etrain[ε̂train(f̂)] equal Etrain[ε(f̂)]? If so, why? If not, give a clear argument as to
where your previous argument breaks down.

c. [8 points] Let F = (f1, f2, . . .) be a collection of functions and let f̂train minimize the training error such

that ε̂train(f̂train) ≤ ε̂train(f) for all f ∈ F . Show that

Etrain[ε̂train(f̂train)] ≤ Etrain,test[ε̂test(f̂train)].

(Hint: note that

Etrain,test[ε̂test(f̂train)] =
∑
f∈F

Etrain,test[ε̂test(f)1{f̂train = f}]

=
∑
f∈F

Etest[ε̂test(f)]Etrain[1{f̂train = f}] =
∑
f∈F

Etest[ε̂test(f)]Ptrain(f̂train = f)

where the second equality follows from the independence between the train and test set.)

3

Bias-Variance tradeoff

B.1. For i = 1, . . . , n let xi = i/n and yi = f(xi) + εi where εi ∼ N (0, σ2) for some unknown f we wish
to approximate at values {xi}ni=1. We will approximate f with a step function estimator. For some m ≤ n
such that n/m is an integer define the estimator

f̂m(x) =

n/m∑
j=1

cj1{x ∈
(

(j − 1)m

n
,
jm

n

]
} where cj =

1

m

jm∑
i=(j−1)m+1

yi.

Note that this estimator just partitions {1, . . . , n} into intervals {1, . . . ,m}, {m+ 1, . . . , 2m}, . . . , {n−m+
1, . . . , n} and predicts the average of the observations within each interval (see Figure 1).

Figure 1: Step function estimator with n = 256, m = 16, and σ2 = 1.

By the bias-variance decomposition at some xi we have

E
[
(f̂m(xi)− f(xi))

2
]

= (E[f̂m(xi)]− f(xi))
2︸ ︷︷ ︸

Bias2(xi)

+E
[
(f̂m(xi)− E[f̂m(xi)])

2
]

︸ ︷︷ ︸
Variance(xi)

a. [5 points] Intuitively, how do you expect the bias and variance to behave for small values of m? What
about large values of m?

b. [5 points] If we define f̄ (j) = 1
m

∑jm
i=(j−1)m+1 f(xi) and the average bias-squared as 1

n

∑n
i=1(E[f̂m(xi)]−

f(xi))
2, show that

1

n

n∑
i=1

(E[f̂m(xi)]− f(xi))
2 =

1

n

n/m∑
j=1

jm∑
i=(j−1)m+1

(f̄ (j) − f(xi))
2

c. [5 points] If we define the average variance as E
[
1
n

∑n
i=1(f̂m(xi)− E[f̂m(xi)])

2
]
, show (both equali-

ties)

E

[
1

n

n∑
i=1

(f̂m(xi)− E[f̂m(xi)])
2

]
=

1

n

n/m∑
j=1

mE[(cj − f̄ (j))2] =
σ2

m

4

d. [15 points] Let n = 256, σ2 = 1, and f(x) = 4 sin(πx) cos(6πx2). For values of m = 1, 2, 4, 8, 16, 32

plot the average empirical error 1
n

∑n
i=1(f̂m(xi) − f(xi))

2 using randomly drawn data as a function
of m on the x-axis. On the same plot, using parts b and c of above, plot the average bias-squared,
the average variance, and their sum (the average error). Thus, there should be 4 lines on your plot,
each described in a legend.

e. [5 points] By the Mean-Value theorem we have that mini=(j−1)m+1,...,jm f(xi) ≤ f̄ (j) ≤ maxi=(j−1)m+1,...,jm f(xi).

Suppose f is L-Lipschitz so that |f(xi) − f(xj)| ≤ L
n |i − j| for all i, j ∈ {1, . . . , n} for some L > 0.

Show that the average bias-squared is O(L
2m2

n2). Using the expression for average variance above, the

total error behaves like O(L
2m2

n2 + σ2

m). Minimize this expression with respect to m. Does this value
of m, and the total error when you plug this value of m back in, behave in an intuitive way with
respect to n, L, σ2? That is, how does m scale with each of these parameters? It turns out that
this simple estimator (with the optimized choice of m) obtains the best achievable error rate up to
a universal constant in this setup for this class of L-Lipschitz functions (see Tsybakov’s Introduction
to Nonparametric Estimation for details).

This setup of each xi deterministically placed at i/n is a good approximation for the more natural setting
where each xi is drawn uniformly at random from [0, 1]. In fact, one can redo this problem and obtain
nearly identical conclusions, but the calculations are messier.

5

Polynomial Regression

Relevant Files1

• polyreg.py
• linreg closedform.py

• test polyreg univariate.py

• test polyreg learningCurve.py

• data/polydata.dat

A.4.[10 points] Recall that polynomial regression learns a function hθ(x) = θ0 + θ1x+ θ2x
2 + . . .+ θdx

d. In this
case, d represents the polynomial’s degree. We can equivalently write this in the form of a linear model

hθ(x) = θ0φ0(x) + θ1φ1(x) + θ2φ2(x) + . . .+ θdφd(x) , (1)

using the basis expansion that φj(x) = xj . Notice that, with this basis expansion, we obtain a linear model
where the features are various powers of the single univariate x. We’re still solving a linear regression problem,
but are fitting a polynomial function of the input.

Implement regularized polynomial regression in polyreg.py. You may implement it however you like, using
gradient descent or a closed-form solution. However, I would recommend the closed-form solution since the data
sets are small; for this reason, we’ve included an example closed-form implementation of linear regression in
linreg closedform.py (you are welcome to build upon this implementation, but make CERTAIN you under-
stand it, since you’ll need to change several lines of it). You are also welcome to build upon your implementation
from the previous assignment, but you must follow the API below. Note that all matrices are actually 2D numpy
arrays in the implementation.

• init (degree=1, regLambda=1E-8) : constructor with arguments of d and λ
• fit(X,Y): method to train the polynomial regression model
• predict(X): method to use the trained polynomial regression model for prediction
• polyfeatures(X, degree): expands the given n×1 matrix X into an n×d matrix of polynomial features

of degree d. Note that the returned matrix will not include the zero-th power.
Note that the polyfeatures(X, degree) function maps the original univariate data into its higher order
powers. Specifically, X will be an n × 1 matrix (X ∈ Rn×1) and this function will return the polynomial
expansion of this data, a n × d matrix. Note that this function will not add in the zero-th order feature
(i.e., x0 = 1). You should add the x0 feature separately, outside of this function, before training the model.

Figure 2: Fit of polynomial regression with λ =
0 and d = 8

By not including the x0 column in the matrix polyfeatures(),
this allows the polyfeatures function to be more general, so
it could be applied to multi-variate data as well. (If it did add
the x0 feature, we’d end up with multiple columns of 1’s for
multivariate data.)

Also, notice that the resulting features will be badly scaled if
we use them in raw form. For example, with a polynomial of
degree d = 8 and x = 20, the basis expansion yields x1 = 20
while x8 = 2.56×1010 – an absolutely huge difference in range.
Consequently, we will need to standardize the data before solv-
ing linear regression. Standardize the data in fit() after you
perform the polynomial feature expansion. You’ll need to ap-
ply the same standardization transformation in predict() be-
fore you apply it to new data.

Run test polyreg univariate.py to test your implementation, which will plot the learned function. In this
case, the script fits a polynomial of degree d = 8 with no regularization λ = 0. From the plot, we see that
the function fits the data well, but will not generalize well to new data points. Try increasing the amount of
regularization, and examine the resulting effect on the function.

1Bold text indicates files or functions that you will need to complete; you should not need to modify any of the other files.

6

A.5. [10 points] In this problem we will examine the bias-variance tradeoff through learning curves. Learning
curves provide a valuable mechanism for evaluating the bias-variance tradeoff. Implement the learningCurve()
function in polyreg.py to compute the learning curves for a given training/test set. The learningCurve(Xtrain,
ytrain, Xtest, ytest, degree, regLambda) function should take in the training data (Xtrain, ytrain), the
testing data (Xtest, ytest), and values for the polynomial degree d and regularization parameter λ.
The function should return two arrays, errorTrain (the array of training errors) and errorTest (the array of
testing errors). The ith index (start from 0) of each array should return the training error (or testing error) for
learning with i + 1 training instances. Note that the 0th index actually won’t matter, since we typically start
displaying the learning curves with two or more instances.

When computing the learning curves, you should learn on Xtrain[0:i] for i = 1, . . . ,numInstances(Xtrain) + 1,
each time computing the testing error over the entire test set. There is no need to shuffle the training data,
or to average the error over multiple trials – just produce the learning curves for the given training/testing sets
with the instances in their given order. Recall that the error for regression problems is given by

1

n

n∑
i=1

(hθ(xi)− yi)2 . (2)

Once the function is written to compute the learning curves, run the test polyreg learningCurve.py script
to plot the learning curves for various values of λ and d. You should see plots similar to the following:

Notice the following:

• The y-axis is using a log-scale and the ranges of the y-scale are all different for the plots. The dashed
black line indicates the y = 1 line as a point of reference between the plots.

• The plot of the unregularized model with d = 1 shows poor training error, indicating a high bias (i.e., it
is a standard univariate linear regression fit).

• The plot of the unregularized model (λ = 0) with d = 8 shows that the training error is low, but that the
testing error is high. There is a huge gap between the training and testing errors caused by the model
overfitting the training data, indicating a high variance problem.

7

• As the regularization parameter increases (e.g., λ = 1) with d = 8, we see that the gap between the
training and testing error narrows, with both the training and testing errors converging to a low value.
We can see that the model fits the data well and generalizes well, and therefore does not have either a
high bias or a high variance problem. Effectively, it has a good tradeoff between bias and variance.

• Once the regularization parameter is too high (λ = 100), we see that the training and testing errors are
once again high, indicating a poor fit. Effectively, there is too much regularization, resulting in high bias.

Make absolutely certain that you understand these observations, and how they relate to the learning curve plots.
In practice, we can choose the value for λ via cross-validation to achieve the best bias-variance tradeoff.

Ridge Regression on MNIST
A.6. In this problem we will implement a regularized least squares classifier for the MNIST data set. The task
is to classify handwritten images of numbers between 0 to 9.

You are NOT allowed to use any of the prebuilt classifiers in sklearn. Feel free to use any method from numpy

or scipy. Remember: if you are inverting a matrix in your code, you are probably doing something wrong
(Hint: look at scipy.linalg.solve).

Get the data from https://pypi.python.org/pypi/python-mnist.
Load the data as follows:

from mnist import MNIST

def load_dataset():

mndata = MNIST(’./data/’)

X_train, labels_train = map(np.array, mndata.load_training())

X_test, labels_test = map(np.array, mndata.load_testing())

X_train = X_train/255.0

X_test = X_test/255.0

Each example has features xi ∈ Rd (with d = 28∗28 = 784) and label zj ∈ {0, . . . , 9}. You can visualize a single
example xi with imshow after reshaping it to its original 28 × 28 image shape (and noting that the label zj is

accurate). We wish to learn a predictor f̂ that takes as input a vector in Rd and outputs an index in {0, . . . , 9}.
We define our training and testing classification error on a predictor f as

ε̂train(f) =
1

Ntrain

∑
(x,z)∈Training Set

1{f(x) 6= z}

ε̂test(f) =
1

Ntest

∑
(x,z)∈Test Set

1{f(x) 6= z}

We will use one-hot encoding of the labels, i.e. of (x, z) the original label z ∈ {0, . . . , 9} is mapped to the
standard basis vector ez where ez is a vector of all zeros except for a 1 in the zth position. We adopt the
notation where we have n data points in our training objective with features xi ∈ Rd and label one-hot encoded
as yi ∈ {0, 1}k where in this case k = 10 since there are 10 digits.

a. [10 points] In this problem we will choose a linear classifier to minimize the regularized least squares
objective:

Ŵ = argminW∈Rd×k

n∑
i=0

‖WTxi − yi‖22 + λ‖W‖2F

Note that ‖W‖F corresponds to the Frobenius norm of W , i.e. ‖W‖2F =
∑d
i=1

∑k
j=1W

2
i,j . To classify a

8

point xi we will use the rule arg maxj=0,...,9 e
T
j Ŵ

Txi. Note that if W =
[
w1 . . . wk

]
then

n∑
i=0

‖WTxi − yi‖22 + λ‖W‖2F =

k∑
j=0

[
n∑
i=1

(eTj W
Txi − eTj yi)2 + λ‖Wej‖2

]

=

k∑
j=0

[
n∑
i=1

(wTj xi − eTj yi)2 + λ‖wj‖2
]

=

k∑
j=0

[
‖Xwj − Y ej‖2 + λ‖wj‖2

]
where X =

[
x1 . . . xn

]> ∈ Rn×d and Y =
[
y1 . . . yn

]> ∈ Rn×k. Show that

Ŵ = (XTX + λI)−1XTY

b. [10 points]

• Code up a function train that takes as input X ∈ Rn×d, Y ∈ {0, 1}n×k, λ > 0 and returns Ŵ .

• Code up a function predict that takes as input W ∈ Rd×k, X ′ ∈ Rm×d and returns an m-length
vector with the ith entry equal to arg maxj=0,...,9 e

T
j W

Tx′i where x′i is a column vector representing
the ith example from X ′.

• Train Ŵ on the MNIST training data with λ = 10−4 and make label predictions on the test data.
What is the training and testing error? Note that they should both be about 15%.

B.2

a. [10 points] We just fit a classifier that was linear in the pixel intensities to the MNIST data. For
classification of digits the raw pixel values are very, very bad features: it’s pretty hard to separate
digits with linear functions in pixel space. The standard solution to this is to come up with some
transform h : Rd → Rp of the original pixel values such that the transformed points are (more easily)
linearly separable. In this problem, you’ll use the feature transform:

h(x) = cos(Gx+ b).

where G ∈ Rp×d, b ∈ Rp, and the cosine function is applied elementwise. We’ll choose G to be
a random matrix, with each entry sampled i.i.d. from a Gaussian with mean µ = 0 and variance
σ2 = 0.1, and b to be a random vector sampled i.i.d. from the uniform distribution on [0, 2π]. The
big question is: how do we choose p? Using cross-validation, of course!

Randomly partition your training set into proportions 80/20 to use as a new training set and validation

set, respectively. Using the train function you wrote above, train a Ŵ p for different values of p and
plot the classification training error and validation error on a single plot with p on the x-axis. Be
careful, your computer may run out of memory and slow to a crawl if p is too large (p ≤ 6000 should
fit into 4 GB of memory that is a minimum for most computers, but if you’re having trouble you can
set p in the several hundreds). You can use the same value of λ as above but feel free to study the
effect of using different values of λ and σ2 for fun.

b. [5 points] Instead of reporting just the test error, which is an unbiased estimate of the true error, we
would like to report a confidence interval around the test error that contains the true error.

Lemma 1. (Hoeffding’s inequality) Fix δ ∈ (0, 1). If for all i = 1, . . . ,m we have that Xi are i.i.d.
random variables with Xi ∈ [a, b] and E[Xi] = µ then

P

(∣∣∣∣∣
(

1

m

m∑
i=1

Xi

)
− µ

∣∣∣∣∣ ≥
√

(b− a)2 log(2/δ)

2m

)
≤ δ

9

We will use the above equation to construct a confidence interval around the true classification error
ε(f̂) = Etest[ε̂test(f̂)] since the test error ε̂test(f̂) is just the average of indicator variables taking values
in {0, 1} corresponding to the ith test example being classified correctly or not, respectively, where

an error happens with probability µ = ε(f̂) = Etest[ε̂test(f̂)], the true classification error.

Let p̂ be the value of p that approximately minimizes the validation error on the plot you just made
and use f̂(x) = arg maxj x

T Ŵ p̂ej to compute the classification test error ε̂test(f̂). Use Hoeffding’s

inequality, of above, to compute a confidence interval that contains Etest[ε̂test(f̂)] (i.e., the true error)

with probability at least 0.95 (i.e., δ = 0.05). Report ε̂test(f̂) and the confidence interval.

10

