
Homework #4

CSE 446/546: Machine Learning

Prof. Kevin Jamieson, Jamie Morgenstern

Due: Wednesday 12/16/2020 11:59 PM

Please review all homework guidance posted on the website before submitting to Gradescope. Reminders:

• Please provide succinct answers along with succinct reasoning for all your answers. Points may be deducted
if long answers demonstrate a lack of clarity. Similarly, when discussing the experimental results, concisely
create tables and/or figures when appropriate to organize the experimental results. In other words, all
your explanations, tables, and figures for any particular part of a question must be grouped together,
which also includes your code and plots.

• When submitting to gradescope, please link each question from the homework in gradescope to the location
of its answer in your homework PDF. Failure to do so may result in point deductions. For instructions,
see https://www.gradescope.com/get_started#student-submission.

• Please recall that B problems, indicated in boxed text are only graded for 546 students, and that they
will be weighted at most 0.2 of your final GPA (see website for details). In Gradescope there is a place
to submit solutions to A and B problems separately. You are welcome to create just a single PDF that
contains answers to both, submit the same PDF twice, but associate the answers with the individual
questions in gradescope.

• If you collaborate on this homework with others, you must indicate who you worked with on your home-
work. Failure to do so may result in accusations of plagiarism.

In the ‘A’ problems on this assignment, you are provided some choice about which subset of problems to
complete. A subset of the problems are color-coded. You may choose one BLUE problem from {A5, A6 }
to complete. You do not need to complete both problems of the same color. Problems of the same color have
the same total point value. Problems {A1, A2, A3, A4, A7} are not optional and should be completed by all
students.

Conceptual Questions

A1. The answers to these questions should be answerable without referring to external materials. Briefly justify
your answers with a few words.

a. [2 points] True or False: Training deep neural networks requires minimizing a non-convex loss function,
and therefore gradient descent might not reach the globally-optimal solution.

b. [2 points] True or False: It is a good practice to initialize all weights to zero when training a deep neural
network.

c. [2 points] True or False: We use non-linear activation functions in a neural network’s hidden layers so
that the network learns non-linear decision boundaries.

d. [2 points] True or False: Given a neural network, the time complexity of the backward pass step in the
backpropagation algorithm can be prohibitively larger compared to the relatively low time complexity of
the forward pass step.

e. [2 points] True or False: Autoencoders, where the encoder and decoder functions are both neural networks
with nonlinear activations, can capture more variance of the data in its encoded representation than PCA
using the same number of dimensions.

1

https://www.gradescope.com/get_started#student-submission

Unsupervised Learning with Autoencoders

A2. In this exercise, we will train two simple autoencoders to perform dimensionality reduction on MNIST.
As discussed in lecture, autoencoders are a long-studied neural network architecture comprised of an encoder
component to summarize the latent features of input data and a decoder component to try and reconstruct the
original data from the latent features.

Weight Initialization and PyTorch

We recommend using nn.Linear for your linear layers. You will not need to initialize the weights yourself; the
default He/Kaiming uniform initialization in PyTorch will be sufficient. Hint: we also recommend using the
nn.Sequential module to organize your network class and simplify the process of writing the forward pass.

Training

Use optim.Adam for this question. Experiment with different learning rates. Use mean squared error (nn.MSELoss()
or F.mse loss()) for the loss function and ReLU for the non-linearity in b.

a. [10 points] Use a network with a single linear layer. Let We ∈ Rh×d and Wd ∈ Rd×h. Given some x ∈ Rd,
the forward pass is formulated as

F1(x) = WdWex.

Run experiments for h ∈ {32, 64, 128}. For each of the different h values, report your final error and
visualize a set of 10 reconstructed digits, side-by-side with the original image. Note: we omit the bias
term in the formulation for notational convenience since nn.Linear learns bias parameters alongside
weight parameters by default.

b. [10 points] Use a single-layer network with non-linearity. Let We ∈ Rh×d, Wd ∈ Rd×h, and activation
σ : R 7−→ R. Given some x ∈ Rd, the forward pass is formulated as

F2(x) = σ(Wdσ(Wex)).

Report the same findings as asked for in part a (for h ∈ {32, 64, 128}.

c. [5 points] Now, evaluate F1(x) and F2(x) (use h = 128 here) on the test set. Provide the test reconstruction
errors in a table.

d. [5 points] In a few sentences, compare the quality of the reconstructions from these two autoencoders
compare with those of PCA from last assignment. You may want to re-run your code for PCA using the
different h values as the number of top-k eigenvalues.

Using Pretrained Networks and Transfer Learning

A3. In this problem, instead of training a neural network from scratch, we will use one that has already been
trained on a very large dataset (ImageNet) and adjust it for the task at hand. This process of adapting weights
in a model trained for another task is known as transfer learning.

• Begin with the pre-trained AlexNet1 model from torchvision.models for both tasks below.

• Do not modify any module within AlexNet that is not the final classifier layer.

• The output of AlexNet comes from the 6th layer of the classifier. Specifically, model.classifer[6] =

nn.Linear(4096, 1000). To use AlexNet with CIFAR-10, we will reinitialize (replace) this layer with
nn.Linear(4096, 10). This re-initializes the weights, and changes the output shape to reflect the desired
number of target classes in CIFAR-10.

1AlexNet achieved an early breakthrough performance on ImageNet and was instrumental in sparking the deep learning revolution
in 2012.

2

We will explore two different ways to formulate transfer learning.

a. [15 points] Use AlexNet as a fixed feature extractor: Add a new linear layer to replace the existing
classification layer, and adjust only the weights of this new layer (keeping the weights of all other layers
fixed). Provide plots for training loss and validation loss over the number of epochs. Report the highest
validation accuracy achieved. Finally, evaluate the model on the test data and report both the accuracy
and the loss.

When using AlexNet as a fixed feature extractor, make sure to freeze all of the parameters in the network
before adding your new linear layer:

model = torchvision.models.alexnet(pretrained=True)

for param in model.parameters():

param.requires_grad = False

model.classifier[6] = nn.Linear(4096, 10)

b. [15 points] Fine-Tuning: The second approach to transfer learning is to fine-tune the weights of the pre-
trained network, in addition to training the new classification layer. In this approach, all network weights
are updated at every training iteration; we simply use the existing AlexNet weights as the “initialization”
for our network (except for the weights in the new classification layer, which will be initialized using
whichever method is specified in the constructor) prior to training on CIFAR-10. Following the same
procedure, report all the same metrics and plots as in the previous question. (Note: fine-tune AlexNet on
CPU takes an insame amount of time, so we recommend you to use Google Colab, which has free GPU
access. To enable GPU for the notebook: Navigate to Edit→Notebook Settings. select GPU from the
Hardware Accelerator drop-down. For information about training on GPU, click on the following link:
Training on GPU)

3

https://colab.research.google.com/
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-on-gpu

Image Classification on CIFAR-10

A4. In this problem we will explore different deep learning architectures for image classification on the CIFAR-10
dataset. If you are not comfortable with PyTorch from the previous lecture and discussion materials, use the tu-
torials at http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html and make sure you
are familiar with tensors, two-dimensional convolutions (nn.Conv2d) and fully-connected layers (nn.Linear),
ReLU non-linearities (F.relu), pooling (nn.MaxPool2d), and tensor reshaping (view).

For this problem, it is highly recommended that you copy and modify the existing network code produced in
the tutorial Training a classifier. You should not be coding this network from scratch!

A few preliminaries:

• Each network f maps an image xin ∈ R32×32×3 (3 channels for RGB) to an output f(xin) = xout ∈ R10.
The class label is predicted as arg maxi=0,1,...,9 x

out
i .

• The network is trained via multiclass cross-entropy loss.

• Create a validation dataset by appropriately partitioning the train dataset. Hint : look at the documenta-
tion for torch.utils.data.random split. Make sure to tune hyperparameters like network architecture
and step size on the validation dataset. Do NOT validate your hyperparameters on the test dataset.

• Modify the training code such that at the end of each epoch (one pass over the training data) it computes
and prints the training and validation classification accuracy.

• While one would usually train a network for hundreds of epochs to reach convergence and maximize
accuracy, this can be prohibitively time-consuming, so feel free to train for just a dozen or so epochs.

For all of the following, apply a hyperparameter tuning method (grid search, random search, etc.) using the
validation set, report the hyperparameter configurations you evaluated and the best set of hyperparameters
from this set, and plot the training and validation classification accuracy as a function of iteration. Produce
a separate line or plot for each hyperparameter configuration evaluated. Finally, evaluate your best set of
hyperparameters on the test data and report the accuracy. On the larger networks, you should expect
to tune hyperparameters and train to at least 70% accuracy.

Here are the network architectures you will construct and compare.

a. [15 points] Fully-connected output, 0 hidden layers (logistic regression): this network has no
hidden layers and linearly maps the input layer to the output layer. This can be written as

xout = Wvec(xin) + b

where xout ∈ R10, xin ∈ R32×32×3, W ∈ R10×3072, b ∈ R10 since 3072 = 32 · 32 · 3. For a tensor
x ∈ Ra×b×c, we let vec(x) ∈ Rabc be the reshaped form of the tensor into a vector (in an arbitrary but
consistent pattern).

b. [15 points] Fully-connected output, 1 fully-connected hidden layer: this network has one hidden
layer denoted as xhidden ∈ RM whereM will be a hyperparameter you choose (M could be in the hundreds).
The nonlinearity applied to the hidden layer will be the relu (relu(x) = max{0, x}. This network can be
written as

xout = W2relu(W1vec(xin) + b1) + b2

where W1 ∈ RM×3072, b1 ∈ RM , W2 ∈ R10×M , b2 ∈ R10.

c. [15 points] Convolutional layer with max-pool and fully-connected output: for a convolutional
layer W1 with filters of size k × k × 3, and M filters (reasonable choices are M = 100, k = 5), we have
that Conv2d(xin,W1) ∈ R(33−k)×(33−k)×M .

4

http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

• Each convolution will have its own offset applied to each of the output pixels of the convolution; we
denote this as Conv2d(xin,W) + b1 where b1 is parameterized in RM . Apply a relu activation to
the result of the convolutional layer.

• Next, use a max-pool of size N ×N (a reasonable choice is N = 14 to pool to 2× 2 with k = 5) we

have that MaxPool(relu(Conv2d(xin,W1) + b1)) ∈ Rb
33−k

N c×b 33−k
N c×M .

• We will then apply a fully-connected layer to the output to get a final network given as

xoutput = W2vec(MaxPool(relu(Conv2d(xinput,W1) + b1))) + b2

where W2 ∈ R10×M(b 33−k
N c)2 , b2 ∈ R10.

The parameters M,k,N (in addition to the step size and momentum) are all hyperparameters, but you
can choose a reasonable value.

d. [5 points] Tuning: Return to the original network you were left with at the end of the tutorial Training
a classifier. (Note that this is not the network from part (c) above.) Tune the different hyperparameters
(number of convolutional filters, filter sizes, dimensionality of the fully-connected layers, stepsize, etc.) and
train for a sufficient number of iterations to achieve a train accuracy of at least 87%. You may not modify
the core structure of the model (i.e., adding additional layers). Provide the hyperparameter configuration
used to achieve this performance. Make sure to save this model so that you can do the next part (see
the Training a classifier tutorial for details on how to do this).

e. [10 points] Adversarial Attacks: Modern deep neural networks are brittle and susceptible to small
perturbations to their inputs. This gives rise to adversarial examples, which are nearly indistinguishable
to the human eye but somehow “fool” neural networks into making drastically wrong predictions.

One algorithm to generate such examples is the untargeted fast gradient sign method (FGSM) attack,
which can be described as follows: let x be an input image with label y, F be a neural network, and ε be
a small value (intuitively, an attack rate).

ŷ = F(x)

L = CrossEntropy(ŷ, y)

x′ = x+ ε ∗ sign (∇xL)

where sign(t) = t
|t| . We then use x′ as an input to the network. Note that the calculation for x′ loosely

resembles gradient descent. Intuitively, we are slightly adjusting the input image so that the model is less
likely to predict its true class.

For this part, use your classifier from part (d) to do the following steps. As always, please provide all code
and plots.

1. Select four images from the train set that have been correctly classified. Visualize them and provide
their labels.

2. Implement the untargeted FGSM algorithm. Run one iteration on these images and visualize them:
they should look like the originals.

3. Provide the predicted labels for your attacked images. You should have at least one image that is
incorrectly classified. Remark: FGSM is a simple attack, but it’s not always effective. In order to
generate successful adversarial examples, you may need to try different values of ε or even different
images, depending on where your classifier excels.

4. Explain the significance of the existence of such adversarial examples.

The number of hyperparameters to tune in exercise (d), combined with the slow training times, will hopefully
give you a taste of how difficult it is to construct networks with good generalization performance. State-of-the-art
networks can have dozens of layers, each with their own hyperparameters to tune. Additional hyperparameters
you are welcome to play with if you are so inclined, include: changing the activation function, replace max-pool
with average-pool, and experimenting with batch normalization or dropout.

5

Text classification on SST-2

A5. The Stanford Sentiment Treebank (SST-2) is a dataset of movie reviews. Each review is annotated with a
label indicating whether the sentiment of the review is positive or negative. Below are some examples from the
dataset. Note that often times the reviews are only partial sentences or even single words.

Sequence Sentiment

is one big , dumb action movie . Negative
perfectly executed and wonderfully sympathetic characters , Positive
until then there ’s always these rehashes to feed to the younger generations Negative
is like nothing we westerners have seen before . Positive

In this problem you will use a Recurrent Neural Network (RNN) for classifying reviews as either Positive (1) or
Negative (0).

Using an RNN for binary classification

Above is a simplified visualization of the RNN you will be building. Each token of the input sequence (CSE, 446,
. . .) is fed into the network sequentially. Note that in reality, we convert each token to some integer index. But
training with discrete values does not work well, so we also “embed” the words in a high-dimensional continuous
space. We have already provided an nn.Embedding layer to you to do this. Each RNN cell (squares above)
generates a hidden state hi. We then feed the last hidden state into a simple fully-connected layer, which then
produces a single prediction between 0 and 1.

Setup

1. Download the GloVe embeddings from http://nlp.stanford.edu/data/glove.6B.zip. Extract the zip
file and move the file glove.6B.50d.txt into the same folder as the starter code (util.py, train.py,

hw4 a5.py).

2. Download the SST-2 dataset from here https://gluebenchmark.com/tasks (Click on download next to
The Stanford Sentiment Treebank). Extract the zip file into the same folder as above.

You only need to modify hw4 a5.py, however you are free to also modify the other two files. You will only
submit hw4 a5.py, but if you make changes to the other files you should also include them in your submission.

Problems

a. [10 points] In Natural Language Processing (NLP), we usually have to deal with variable length data. In
SST-2, each data point corresponds to a review, and reviews often have different lengths. The issue is
that to efficiently train a model with textual data, we need to create batches of data that are fixed size
matrices. In order to store a batch of sequences in a single matrix, we add padding to shorter sequences
so that each sequence has the same length. Given a list of N sequences, we:

1. Find the length of the longest sequence in the batch, call it max sequence length

6

http://nlp.stanford.edu/data/glove.6B.zip
https://gluebenchmark.com/tasks

2. Append padding tokens to the end of each sequence so that each sequence has length max sequence length

3. Stack the sequences into a matrix of size (N, max sequence length)

In this process, words are mapped to integer ids, so in the above process we actually store integers rather
than strings. For the padding token, we simply use id 0. In the file hw4 a5.py, fill out collate fn to
perform the above batching process. Details are provided in the comment of the function.

b. [15 points] Implement the constructor and forward method for RNNBinaryClassificationModel. You
will use three different types of recurrent neural networks: the vanilla RNN (nn.RNN), Long Short-Term
Memory (nn.LSTM) and Gated Recurrent Units (nn.GRU). For the hidden size, use 64 (Usually this is a
hyperparameter you need to tune). We have already provided you with the embedding layer to turn token
indices into continuous vectors of size 50, but you will need a linear layer to transform the last hidden
state of the recurrent layer to a shape that can be interpreted as a label prediction. The code for each of
the three networks will only differ by the recurrent layer you use. In your code submission, use any of the
three layers.

c. [5 points] Implement the method of RNNBinaryClassificationModel, which should compute the binary
cross-entropy loss between the predictions and the target labels. Also implement the accuracy method,
which given the predictions and the target labels should return the accuracy.

d. [15 points] We have already provided all of the data loading, training and validation code for you. Choose
an appropriate batch size, learning rate and number of epochs and set the constants TRAINING BATCH SIZE,
NUM EPOCHS, LEARNING RATE accordingly. With a good learning rate, you shouldn’t have to train for more
than 16 epochs. Report your best validation loss and corresponding validation accuracy, corresponding
training loss and training accuracy for each of the three types of recurrent neural networks.

e. [5 points] Our recurrent neural network processes the text input from left to right. What assumptions is
this making about the structure of the input, and what are some potential problems with this setup?

f. [5 points] Our model passes the final hidden state of our recurrent neural network into the classification
layer. In a few sentences, answer the following questions: Why does this make sense? What are some
potential problems with this setup?

g. [5 points] Currently, we are only using the final hidden state of the RNN to classify the entire sequence as
having either positive or negative sentiment. But can we make use of the other hidden states? Suppose
you wanted to use the same architecture for a related task called tagging. For tagging, the goal is to
predict a tag for each token of the sequence. For instance, we might want predict the part of speech tag
(verb, noun, adjective etc.) of each token. In a few sentences, describe how you would modify the current
architecture to predict a tag for each token.

h. (Extra Credit: [1 points]) When you run training, the model will print out 8 random reviews. What is
the funniest review you have encountered after running the code a few times?

Topic Modeling

A6. In this problem, we will use a feedforward neural network to study Topic Modeling: given a corpus of
documents, the goal is to create an interpretable vector representation of a document. We define “topic” as
a learned probability distribution over words. For example, one distribution captures how people might
rank words for “sports” and another for “politics”. Because of different probability distributions of words,
each topic can be treated as a clustering over words. By observing the K most important words (ranked by
probability) in one topic, different people can come up with different names for them.

Model/Algorithm Description As input, the document i is a vector xi ∈ RV ; each index of the vector
uniquely maps to a word in the provided vocabulary.json. The value at each index is the frequency of the
word corresponding to that index. We initially ignore the representation of our document and assume each
document is generated from a latent variable, zi. To model this data-generating process, we simultaneously
learn two modules:

7

a. (See Problem a) An encoder, which maps from the observed text an approximate posterior q(zi | xi),
the distribution over the hidden variable zi after we observe input xi. Intuitively, this means encoder is
guessing what is the probability distribution for hidden variable z that is used to generate the document.
We make the assumption that our posterior distribution is a normally distributed posterior, i.e.,

q(zi | xi) = N (zi | fµ(xi),diag(fσ(xi)))

b. (See Problem b) A decoder, which reconstructs the text from the latent representation (encoded by the
encoder),

xi ∼ p(xi | fd(zi))

Using standard principles of variational inference, we derive a variational bound on the marginal log-likelihood
of the observed data. This metric is typically used in unsupervised setting for training a model; the intuition
of this is that if the decoder can “reconstruct” the input xi (using zi inferred by encoder) with higher and
higher probability, this might indicate (not a guarantee) the model as a whole is getting better at modeling this
data-generating process.
It is necessary to use a bound as a proxy to this loss function because the exact value of this log-likelihood is
hard to compute. In our training, the algorithm will keep increase the lower bound, so that we know the model
is getting better if someone figure out a way to calculate the log-likelihood. (See Problem c).

log p(xi) ≥ Eq(zi|xi)[log p(xi | zi)]−KL[q(zi | xi) ‖ p(zi)] = B(xi)

Since the variance of q(zi | xi) is a diagonal matrix, we can use a reparameterization trick to approximate the
expectation with a single sample:

B(xi) ≈ log p(xi | z(s)i)−KL[q(zi | xi) ‖ p(zi)]

z
(s)
i = fµ(xi) + fσ(xi) · ε(s),

where ε(s) ∼ N (0, I) is sampled from an independent normal distribution, and · deonotes a element-wise
multiplication. For simplicity, we assume the prior distribution — our guess about zi before we see any input
— p(zi) = N (0, I).

Training Training this model will use mini-batch gradient descent on the loss function in 6.

Quality of learned topic We use Normalized Pointwise Mutual Information (NPMI) as a metric to compare
different topic models. It meausres the probability that two words collocate in an external corpus (in our
case, the validation data). For each topic t — a probability distribution over words in vocabulary set, we collect
the top ten most probable words and compute NPMI between all pairs (See Problem e for more details):

NPMI(t) =
∑

i,j≤10;j 6=i

log
P (ti,tj)

P (ti),P (tj)

− logP (ti, tj)
, (1)

where ti denotes the ith word from your vocabulary set.
Note: For this question, feel free to use any PyTorch functionality. You are restricted to using PyTorch,
Numpy, Scikit-learn and other non-deep-learning packages. If you found other package useful, please check with
us before you use it. We already preprocess the data for you. Please see README.md from ag.tgz.

a. [20 points] From now on, we will use a single example for clear illustration. The encoder receive an input

xi and try to guess the corresponding z
(s)
i . It has the following formulation:

hi = ReLU(WhReLU(Wxxi + bx) + bh) Wh ∈ Rh×h,Wx ∈ Rh×V

µi = fµ(xi) = Wµhi + bµ,Wµ ∈ RT×h

σi = fσ(xi) = exp(Wσhi + bσ),Wσ ∈ RT×h

z
(s)
i = µi + σi · ε(s).

T denotes the number of topics used for this model. We recommend set T ∈ [20, 100]. It is a hyperpa-
rameter you can play with. Please implement this and include your code for encoder here. Note that ·
deonotes an element-wise multiplication. (Suggestion: Name your variables appropriately)

8

b. [5 points] The decoder has a simple formulation:

θi = softmax(z
(s)
i)

ηi = softmax(Bθi),B ∈ RV×T (2)

Implement this loss and include your code. (Suggestion: Name your variables appropriately). Note that
decoder doesn’t have an offset.

c. [10 points] For the decoder, we use the following form, which reconstruct the input in terms of topics
(probability distributions over the vocabulary):

log p(xi | z(s)i) =

V∑
j=1

xij · log ηij ,

where j ranges over the vocabulary.

Now we are done with the forward pass of the model. Let’s focus on the backword pass by first looking
at the lower bound B(xi):

log p(xi | z(s)i)−KL[q(zi | xi) ‖ p(zi)] (3)

So, you can use the closed-form solution for KL here.2 Because we are using gradient descent (i.e.,
decrease the loss), and yet we want to increase our lower bound, so our loss function is actually −B(xi).
For mini-batch gradient descent, you just need to average the −B(xi)s

Please implement this loss correctly and include your code here. (Suggestion: Name your variables
appropriately).

d. [5 points] Wait a minute. If you train using the loss function above, you won’t get good results! Likely,
your T topics will be very similar to each other. Variational Autoencoder (VAE) is generally deemed as
a mathematically appealing model, but this is still an open problem of how to train VAE properly. (For
more information about VAE, click on the following link: VAE) We will introduce a scalar α before the
KL term in Eq. 3, which we gradually increase from 0 to 1 (increase it every gradient update). There
are many ways you can increase α, but the simplest increase is

α← α+
1

linear scaling
,

where linear scaling should be at scale of 1000

Another option is

α← α+
1

1 + exp(−w1 ∗ (1− w2))
,

recommended values are w1 = 0.25, w2 = 15. Please show us your rewritten loss function, and code related
to updates. (Suggestion: Name your variables appropriately)

e. [10 points] The global NPMI is computed by averaging the NPMIs across all topics. For this problem, use
the global NPMI(per epoch) as an early stopping criteria. If NPMI doesn’t increase for P epochs,
we stop the training. A recommended value for P is 5.

We will provide the code to help you calculate the NPMI score. You might want to make some modification
to the provided code. Show your plot for NPMI v.s. training epoch. On the same plot, show loss v.s.
training epoch as well.

f. [10 points] Now you trained your model. See further note on why this model is interpretable in the
following section. For the purpose of this problem, you can get t th topic (i.e., a probability distribution)
by simply setting θ to be a one-hot vector where t th entry is 1 and 0 elsewhere. Then, use Eq. 2 to get
it.

Choose 5 of your favorite topics, could you think of a good name for each topic? Then, show top 10 words
from each.

2https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Multivariate_normal_distributions

9

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Multivariate_normal_distributions

Interpretability

By placing a softmax on zi, we can interpret θi as a distribution over latent topics. In another word, each
document can be represented as a “topic vector”, which consists of different proportion of all the learned topics.
See example here.
For example, θi = [0.3, 0.7], and the learned topics can be labeled [Sport,News]. An intuitive understanding is
“this document is 30% on sport and 70% on News.”
Each topic could have the probability distribution over vocabulary set: Sport = [0.4, 0.4, 0.2, 0.2] and News =
[0.1, 0.2, 0.4, 0.3], with a tiny (ordered) vocabulary set = [basketball,player, report,press].
In this sense, B is the core of the topic model, as it contains positive and negative topical value before we
multiply it with θ and apply softmax.

Comparison with other methods (See lecture slide on text processing)

• Use tf-idf to calculate a feature vector for each document and run k-means on it. This method will be
severely affected by the size of vocabulary set. The more words you consider, the more your algorithm
will be affected by the “curse of dimensionality”

• Nonnegative matrix factorization. The downside is that matrix size is determined by the size of vocabulary
set, which affect the compute time for factorization.

10

Matrix Completion and Recommendation System

B1. You will build a personalized movie recommender system. We will use the 100K MovieLens dataset
available at https://grouplens.org/datasets/movielens/100k/. There are m = 1682 movies and n =
943 users. Each user rated at least 20 movies, but some watched many more. The total dataset contains
100, 000 total ratings from all users. The goal is to recommend movies the users haven’t seen.
Consider a matrix R ∈ Rm×n where the entry Ri,j ∈ {1, . . . , 5} represents the jth user’s rating on movie
i. A higher value represents that the user is more satisfied with the movie.

We may think of our historical data as some observed entries of this matrix while many remain unknown,
and we wish to estimate the unknown ratings that each user would assign to each movie. We could use
these ratings to recommend the “best” movies for each user.

The dataset contains user and movie metadata which we will ignore. We strictly use the ratings contained
in the u.data file. Use this data file and the following python code to construct a training and test set:

import csv

import numpy as np

data = []

with open(’u.data’) as csvfile:

spamreader = csv.reader(csvfile, delimiter=’\t’)

for row in spamreader:

data.append([int(row[0])-1, int(row[1])-1, int(row[2])])

data = np.array(data)

num_observations = len(data) # num_observations = 100,000

num_users = max(data[:,0])+1 # num_users = 943, indexed 0,...,942

num_items = max(data[:,1])+1 # num_items = 1682 indexed 0,...,1681

np.random.seed(1)

num_train = int(0.8*num_observations)

perm = np.random.permutation(data.shape[0])

train = data[perm[0:num_train],:]

test = data[perm[num_train::],:]

The arrays train and test contain Rtrain and Rtest, respectively. Each line takes the form “j, i, s”, where
j is the user index, i is the movie index, and s is the user’s score.

Using train, you will train a model that can predict R̂ ∈ Rm×n, how every user would rate every movie.
You will evaluate your model based on the average squared error on test:

Etest(R̂) =
1

|test|
∑

(i,j,Ri,j)∈test

(R̂i,j −Ri,j)2.

Low-rank matrix factorization is a baseline method for personalized recommendation. It learns a vector
representation ui ∈ Rd for each movie and a vector representation vj ∈ Rd for each user, such that the
inner product 〈ui, vj〉 approximates the rating Ri,j . You will build a simple latent factor model.

You will implement multiple estimators and use the inner product 〈ui, vj〉 to predict if user j likes movie
i in the test data. For simplicity, we will put aside best practices and choose hyperparameters by using
those that minimize the test error. You may use fundamental operators from numpy or pytorch in this
problem (numpy.linalg.lstsq, SVD, autograd, etc.) but not any precooked algorithm from a package

11

https://grouplens.org/datasets/movielens/100k/

like scikit-learn. If there is a question whether some package is not allowed for use in this problem, it
probably is not appropriate.

a. [5 points] Our first estimator pools all users together and, for each movie, outputs as its prediction
the average user rating of that movie in train. That is, if µ ∈ Rm is a vector where µi is the average
rating of the users that rated the ith movie, write this estimator R̂ as a rank-one matrix.
Compute the estimate R̂. What is Etest(R̂) for this estimate?

b. [5 points] Allocate a matrix R̃i,j ∈ Rm×n and set its entries equal to the known values in the

training set, and 0 otherwise. Let R̂(d) be the best rank-d approximation (in terms of squared error)

approximation to R̃. This is equivalent to computing the singular value decomposition (SVD) and
using the top d singular values. This learns a lower-dimensional vector representation for users and
movies, assuming that each user would give a rating of 0 to any movie they have not reviewed.

• For each d = 1, 2, 5, 10, 20, 50, compute the estimator R̂(d). We recommend using an efficient
solver such as scipy.sparse.linalg.svds.

• Plot the average squared error of predictions on the training set and test set on a single plot, as
a function of d.

Note that, in most applications, we would not actually allocate a full m × n matrix. We do so here
only because our data is relatively small and it is instructive.

c. [10 points] Replacing all missing values by a constant may impose strong and potentially incorrect
assumptions on the unobserved entries of R. A more reasonable choice is to minimize the MSE (mean
squared error) only on rated movies. Define a loss function:

L
(
{ui}mi=1, {vj}nj=1

)
:=

∑
(i,j,Ri,j)∈train

(〈ui, vj〉 −Ri,j)2 + λ

m∑
i=1

‖ui‖22 + λ

n∑
j=1

‖vj‖22 (4)

where λ > 0 is the regularization coefficient. We will implement algorithms to learn vector represen-
tations by minimizing (4).

Since this is a non-convex optimization problem, the initial starting point and hyperparameters may
affect the quality of R̂. You may need to tune λ and σ to optimize the loss you see.

• Alternating minimization: First, randomly initialize {ui} and {vj}. Then, alternatate between
(1) minimizing the loss function with respect to {ui} by treating {vj} as fixed; and (2) minimizing
the loss function with respect to {vj} by treating {ui} as fixed. Repeat (1) and (2) until both
{ui} and {vj} converge. Note that when one of {ui} or {vj} is given, minimizing the loss function
with respect to the other part has a closed-form solution.

• Try d ∈ {1, 2, 5, 10, 20, 50} and plot the mean squared error of train and test as a function of d.

Some hints: Common choices for initializing the vectors {ui}mi=1, {vj}nj=1 include: entries drawn from
np.random.rand() scaled by some scale factor σ > 0 (σ is an additional hyperparameter), or using
one of the solutions from part b or c. You should never be allocating an m×n matrix for this problem.

d. [10 points] Repeat part c, using batched SGD rather than alternating minimization.

Stochastic Gradient Descent : First, randomly initialize {ui} and {vj}. Then take a batch of random
samples (of size b from your training set and compute a gradient step, and repeat until convergence.

Note that batch size b, regularization constant λ, scaling parameter σ and learning rate η are all
hyperparameters. Since this is a non-convex optimization, the results may be quite sensitive to these
hyperparameters and to the initialization.

12

One strategy for choosing η is to select the largest constant value such that the loss L still tends to
decrease. Another strategy is to pick a relatively large value of η and then scale it by some factor
β ∈ (0, 1) so that η 7→ βη every time a number of examples are seen that exceeds the size of the
training set.

Feel free to modify the loss function to, say, different regularizers if it helps reduce the test error. See
http://www.optimization-online.org/DB_FILE/2011/04/3012.pdf for some ideas.

e. [5 points] Briefly, in words, compare the results of the prior two parts. This is an example where the
loss functions are identical, but the algorithm used has drastic impact on how much the model fits,
overfits, or generalizes to new, unseen data.

f. (Extra credit: [5 points]). Implement any algorithm you’d like (you must implement it yourself; do
not use an off-the-shelf algorithm from e.g. scikit-learn) to find an estimator that achieves a test
error of no more than 0.9. Please include your code.

A7. Consider the matrix X∗ ∈ Rn×d (assume n ≥ d) with singular values σ1 ≥ σ2 ≥ . . . ≥ σd. Our goal in
this problem is to find the best rank-k approximation of X∗ via singular value decomposition, thus rigorously
justifying the premise of the problem “Matrix Completion and Recommendation System”. This goal can be
formulated mathematically as the following optimization problem:

min
X:rank(X)=k

‖X −X∗‖2F (5)

a. We say a problem minx∈K f(x) is convex if the search space K is a convex set and the objective function
f is a convex function. Show that problem (5) is not a convex optimization problem. (Hint: is the search
space convex?)

b. In this subproblem, we study projection matrices. Let {w1, ..., wk} ∈ Rn be a set of orthonormal vectors 3.
We can think of these as spanning the column space of a rank k matrix X ∈ Rn×d, like the ones considered
in (5).

(a) Let X∗(i) be the i’th column of X∗. Find the v ∈ span{w1, . . . , wk} that minimizes ‖X∗(i) − v‖2.

(b) Consider the matrix Π defined as Π =
∑k
i=1 wiw

>
i . What are the possible singular values of Π?

Justify your answer with a proof.

(c) Show that Π2 = Π. Give a geometric interpretation of Trace(Π).

(d) In addition to the vectors {wi}ki=1 defined at the start of this sub-problem, consider the vectors
{wj}nj=k+1 obtained by “completing” the subspace Rn. Show that there is a unique projection

matrix Π =
∑n
i=1 wiw

>
i of rank n, which is the identity matrix.

c. In this sub-problem, we use the projection matrix from the previous sub-problem to construct a rank k
approximation.

(a) Consider an orthonormal set of vectors {wi}di=1 ∈ Rn that span the column space of X∗, with the
first k vectors defined as in the previous sub-problem, and the remaining ones chosen to complete
the subspace. As in the previous sub-problem, define Π =

∑k
i=1 wiw

>
i . Define X̂ = ΠX∗ and

Π⊥ =
∑d
i=k+1 wiw

>
i . Show that

‖X̂ −X∗‖2F = ‖Π⊥X∗‖2F .

(b) Show that ‖Π⊥X∗‖2F = Trace(X∗X∗>Π⊥).

(c) Using that X∗ can be written as X∗ =
∑d
i=1 σiuiv

>
i , show that Trace(X∗X∗>Π⊥) ≥

∑d
i=k+1 σ

2
i .

d. In this sub-problem, we conclude our result for the Frobenius norm approximation.

3Recall that we say a set of vectors u, v ∈ Rn are orthonormal if ‖v‖2 = ‖u‖2 = 1 and u>v = 0.

13

http://www.optimization-online.org/DB_FILE/2011/04/3012.pdf

(a) Show that minrank(X)=k ‖X −X∗‖2F =
∑d
i=k+1 σ

2
i .

(b) Based on the above sub-problems, describe a method to construct the best rank-k approximation of
a matrix X∗, where we measure error in squared Frobenius norm.

14

