Machine Learning (CSE 446): Variations on our Themes

Sham M Kakade

© 2019

University of Washington cse446-staff@cs.washington.edu

<ロ > < 回 > < 巨 > < 巨 > < 巨 > 三 の Q (~ 0/17

Announcements

 Midterm review in section. (pickup cheat sheets in Allen center front office)

- See class website for another grading scheme.
- HW3 "milestone" due thurs.
- Iots of good extra credit!
- ► Today: Variations on our Themes:
 - $\blacktriangleright \ \mathsf{sgd} \to \mathsf{mini-batch} \ \mathsf{sgd}$
 - $\blacktriangleright \text{ binary classification } \rightarrow \text{multi-class classification}$
 - linear methods \rightarrow non-linar methods

Our running example for the loss minimization problem

$$\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} \left(y_n - \mathbf{w} \cdot \mathbf{x}_n \right)^2 + \frac{1}{2} \lambda \|\mathbf{w}\|^2$$

► How do we run GD/SGD?

• how do we set the step size? λ ? the "mini-batch" size?

Theory helps with guidance/(sometimes) auto-tuning. Ultimately, we just have try to tune these ourselves to get experience. HW3 helps.

review: GD for the square loss

Data: step sizes $\langle \eta^{(1)}, \dots, \eta^{(K)} \rangle$ **Result:** parameter **w** initialize: $\mathbf{w}^{(0)} = \mathbf{0}$; for $k \in \{1, \dots, K\}$ do $| \mathbf{w}^{(k)} = \mathbf{w}^{(k-1)} + \eta^{(k)} \left(\frac{1}{N} \sum_{n} \left(y_n - \mathbf{w}^{(k-1)} \cdot \mathbf{x}_n\right) \mathbf{x}_n\right)$; end return $\mathbf{w}^{(K)}$;

Algorithm 1: SGD

- the term in red is a costly to compute!
- Even by using matrix multiplications (and not explicitly doing the sum), it is often too slow.

Gradient Descent Tips

how do we set the stepsize?

- Remember: we diverge/unstable if the step size is too big!
- you just set it a little lower (like 1/2) less than when things start to diverge/error starts to drop.
- do we decay it?

No: GD will converge just fine without decaying the learning rate.

- Is GD a good algorithm? if convex, then it is 'poly time'. but GD is often too slow:
 - computing the gradient of the objective function involves a sum over
- SGD: let's sample the gradient!

SGD: review

Data: step sizes $\langle \eta^{(1)}, \dots, \eta^{(K)} \rangle$ **Result:** parameter **w** initialize: $\mathbf{w}^{(0)} = \mathbf{0}$; **for** $k \in \{1, \dots, K\}$ **do** $\begin{vmatrix} \text{Sample } n \sim \text{Uniform}(\{1, \dots, N\}); \\ \mathbf{w}^{(k)} = \mathbf{w}^{(k-1)} + \eta^{(k)} (y_n - \mathbf{w}^{(k-1)} \cdot \mathbf{x}_n) \mathbf{x}_n; \\ \text{end} \\ \text{return } \mathbf{w}^{(K)}; \end{vmatrix}$

Algorithm 2: SGD

the term in red is a "sampled" gradient.

"mini-batch" SGD for the square loss

Data: step sizes $\langle n^{(1)}, \ldots, n^{(K)} \rangle$ **Result:** parameter w initialize: $\mathbf{w}^{(0)} = \mathbf{0}$: for $k \in \{1, ..., K\}$ do Sample m examples of (x, y) (uniformly at random) from the training set and let \mathcal{M} be the set of these m points; $\mathbf{w}^{(k)} = \mathbf{w}^{(k-1)} + \eta^{(k)} \frac{1}{m} \sum_{(x,y) \in \mathcal{M}} \left(y - \mathbf{w}^{(k-1)} \cdot \mathbf{x} \right) \mathbf{x};$ end

return $\mathbf{w}^{(K)}$:

Algorithm 3: SGD

- the term in red is a lower variance, "sampled" gradient.
- \blacktriangleright how do we choose m?

larger m means lower variance but more computation.

Matrix algebra can make computing the term in red very fast! This is critical to get big performance bumps. ヘロト 人口 トイヨト イヨト 三日

SGD Tips: stepsize

Theory: If you turn down the step sizes at (some prescribed decaying method) then SGD will converge to the right answer.

The "classical" theory doesn't provide enough practical guidance.

- Practice:
 - starting stepsize: start it "large": if it is "too large", then either you diverge (or nothing improves). set it a little less (like 1/4) less than this point.
 - When do we decay it?
 When your training error stops decreasing "enough".
 OR based on a dev set.
- HW: you'll need to tune it a little. (a slow approach: sometimes you can just start it somewhat smaller than the "divergent" value and you will find something reasonable.)

SGD Tips: mini-batching

- ▶ Theory: there are diminishing returns to increasing *m*.
 - ► As you grow *m*, your "improvements" tend to diminish.
 - mini-batch size m "small": you can turn it up and you will find that you are making more progress per update.
 - mini-batch size m "large": you can turn it up and you will make roughly the same amount of progress (so your code will become slower).
- ▶ Practice: there are diminishing returns to increasing *m*.
- How do we set it?

Easy: just keep cranking it up and eventually you'll see that your code doesn't get any faster.

Regularization/complexity control: Tips.

- ▶ Theory: really just says that λ controls your "model complexity".
 - we DO know that "early stopping" for GD/SGD is very similar to L2 regularization for us.
 - ▶ i.e. if we don't run for too long, then $\|\mathbf{w}\|^2$ won't become too big.
- Practice:
 - Exact methods (like matrix inverse/least squares): always need to regularize or something horrible happens....
 - GD/SGD: sometimes it works just fine ignoring regularization remember: early stopping is a form complexity control
 - Other times we have to tune it on some dev set. Fortunately, it is pretty robust to tune, by trying out different "orders of magnitude" guesses.

Binary classification \rightarrow Multi-class classification

- ▶ suppose $y \in \{1, 2, \ldots k\}$.
- ▶ MNIST: we have k = 10 classes. How do we learn?
- Misclassification error: the fraction of times (often measured in %) in which our prediction of the label does not agree with the true label.
- Like binary classification, we do not optimize this directly it is often computationally difficult

Multi-class classification: "one vs all"

- Simplest method: consider each class separately.
- ▶ make 10 binary prediction problems:
- Build a separate model of $Pr(y^{class}) = 1|x, \mathbf{w}^{class})$.
- Example: build k = 10 separate linear regression models. HW3!

misclassification error: one perspective...

directly using misclassification error is a poor objective function anyways:

- NP-Hard
- it only gives feedback of "correct" or "not"
- even if you don't predict the true label (e.g. you make a mistake), there is a major difference between your model still "thinking" the true label is likely v.s. thinking the true label is "very unlikely".
- how do give our model better 'feedback'?
 - Seek provide probabilities of all outcomes
 - Then we reward/penalize our model based on its "confidence" of the correct answer...

A better probabilistic model: the soft max

• $y \in \{1, \dots k\}$: Let's turn the probabilistic crank....

▶ The model: we have k weight vectors, $w^{(1)}, w^{(2)}, \dots w^{(k)}$. For $\ell \in \{1, \dots k\}$,

$$p(y = \ell | x, w^{(1)}, w^{(2)}, \dots w^{(k)}) = \frac{\exp(w^{(\ell)} \cdot x)}{\sum_{i=1}^{k} \exp(w^{(i)} \cdot x)}$$

► It is "over-parameterized":

$$p_W(y = k|x) = 1 - \sum_{i=1}^{k-1} p_W(y = i|x)$$

max. likelihood estimation is still a convex problem!

Aside: why might square loss be 'ok' for binary classification?

- Using the square loss for $y \in \{0, 1\}$?
 - it doesn't look like a great surrogate loss.
 - also, it doesn't look like a faithful probabilistic model:
- What is the "Bayes optimal" predictor for the square loss?
- The Bayes optimal predictor for the square loss with $y \in \{0, 1\}$:
- Can we utilize something more non-linear in our regression?

Can We Have Nonlinearity and Convexity?

	expressiveness	convexity
Linear classifiers	\odot	\odot
Neural networks	\odot	\odot

Can We Have Nonlinearity and Convexity?

	expressiveness	convexity	
Linear classifiers	\odot	Û	
Neural networks	\odot	\odot	

Kernel methods: a family of approaches that give us nonlinear decision boundaries without giving up convexity.

Let's try to build feature mappings

- Let $\phi(x)$ be a mapping from *d*-dimensional x to \tilde{d} -dimensional x.
- ▶ 2-dimensional example: quadratic interactions

What do we call these quadratic terms for binary inputs?

Another example

▶ 2-dimensional example: bias+linear+quadratics interactions

What do we call these quadratic terms for binary inputs?

The Kernel Trick

- Some learning algorithms, like the (lin. or logistic) regression, only need you to specify a way to take *inner products* between your feature vectors.
- ► A kernel function (implicitly) computes this inner product:

 $K(\mathbf{x}, \mathbf{v}) = \boldsymbol{\phi}(\mathbf{x}) \cdot \boldsymbol{\phi}(\mathbf{v})$

for some ϕ . Typically it is *cheap* to compute $K(\cdot, \cdot)$, and we never explicitly represent $\phi(\mathbf{v})$ for any vector \mathbf{v} .

Let's see!