Announcements

- Midterm review in section.
 (pickup cheat sheets in Allen center front office)
- See class website for another grading scheme.
- HW3 “milestone” due thurs.
- lots of good extra credit!
- Today: Variations on our Themes:
 - sgd → mini-batch sgd
 - binary classification → multi-class classification
 - linear methods → non-linear methods
Our running example for the loss minimization problem

$$\arg\min_w \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} (y_n - w \cdot x_n)^2 + \frac{1}{2} \lambda \|w\|^2$$

- How do we run GD/SGD?

- how do we set the step size? λ? the “mini-batch” size?

Theory helps with guidance/(sometimes) auto-tuning. Ultimately, we just have try to tune these ourselves to get experience. HW3 helps.
Algorithm 1: SGD

- the term in red is a costly to compute!
- Even by using matrix multiplications (and not explicitly doing the sum), it is often too slow.
Gradient Descent Tips

▸ how do we set the stepsize?
 ▸ Remember: we diverge/unstable if the step size is too big!
 ▸ you just set it a little lower (like $1/2$) less than when things start to diverge/error starts to drop.

▸ do we decay it?
 No: GD will converge just fine without decaying the learning rate.

▸ Is GD a good algorithm?
 if convex, then it is 'poly time'. but GD is often too slow:
 ▸ computing the gradient of the objective function involves a sum over

▸ SGD: let's sample the gradient!
Data: step sizes \(\langle \eta^{(1)}, \ldots, \eta^{(K)} \rangle \)

Result: parameter \(w \)

initialize: \(w^{(0)} = 0; \)

for \(k \in \{1, \ldots, K\} \) do

\[
\text{Sample } n \sim \text{Uniform}\{1, \ldots, N\};
\]

\[
w^{(k)} = w^{(k-1)} + \eta^{(k)} (y_n - w^{(k-1)} \cdot x_n) x_n;
\]

end

return \(w^{(K)}; \)

Algorithm 2: SGD

- the term in red is a “sampled” gradient.
“mini-batch” SGD for the square loss

Data: step sizes \(\langle \eta^{(1)}, \ldots, \eta^{(K)} \rangle \)

Result: parameter \(w \)

initialize: \(w^{(0)} = 0 \);

for \(k \in \{1, \ldots, K\} \) do

| Sample \(m \) examples of \((x, y)\) (uniformly at random) from the training set and let \(M \) be the set of these \(m \) points;
| \(w^{(k)} = w^{(k-1)} + \eta^{(k)} \frac{1}{m} \sum_{(x, y) \in M} (y - w^{(k-1)} \cdot x) x; \)

end

return \(w^{(K)} \);

Algorithm 3: SGD

- the term in red is a lower variance, “sampled” gradient.
- how do we choose \(m \)?
 - larger \(m \) means lower variance but more computation.
- Matrix algebra can make computing the term in red very fast!
 - This is critical to get big performance bumps.
SGD Tips: stepsize

- **Theory:** If you turn down the step sizes at (some prescribed decaying method) then SGD will converge to the right answer. The “classical” theory doesn’t provide enough practical guidance.

- **Practice:**
 - starting stepsize: start it “large”:
 - if it is “too large”, then either you diverge (or nothing improves). set it a little less (like 1/4) less than this point.
 - When do we decay it?
 - When your training error stops decreasing “enough”.
 - OR based on a dev set.

- **HW:** you’ll need to tune it a little. (a slow approach: sometimes you can just start it somewhat smaller than the “divergent” value and you will find something reasonable.)
SGD Tips: mini-batching

- Theory: there are diminishing returns to increasing m.
 - As you grow m, your “improvements” tend to diminish.
 - Mini-batch size m “small”: you can turn it up and you will find that you are making more progress per update.
 - Mini-batch size m “large”: you can turn it up and you will make roughly the same amount of progress (so your code will become slower).

- Practice: there are diminishing returns to increasing m.

- How do we set it?
 Easy: just keep cranking it up and eventually you’ll see that your code doesn’t get any faster.
Regularization/complexity control: Tips.

- Theory: really just says that λ controls your “model complexity”.
 - we DO know that “early stopping” for GD/SGD is very similar to L2 regularization for us.
 - i.e. if we don’t run for too long, then $\|w\|^2$ won’t become too big.

- Practice:
 - Exact methods (like matrix inverse/least squares): always need to regularize or something horrible happens....
 - GD/SGD: sometimes it works just fine ignoring regularization remember: early stopping is a form complexity control
 - Other times we have to tune it on some dev set. Fortunately, it is pretty robust to tune, by trying out different “orders of magnitude” guesses.
Binary classification \rightarrow Multi-class classification

- Suppose $y \in \{1, 2, \ldots, k\}$.
- MNIST: we have $k = 10$ classes. How do we learn?
- Misclassification error: the fraction of times (often measured in %) in which our prediction of the label does not agree with the true label.
- Like binary classification, we do not optimize this directly; it is often computationally difficult.
Multi-class classification: “one vs all”

- Simplest method: consider each class separately.
- make 10 binary prediction problems:
 - Build a separate model of $\Pr(y_{\text{class}} = 1 | x, w_{\text{class}})$.
- Example: build $k = 10$ separate linear regression models. HW3!
misclassification error: one perspective...

- directly using misclassification error is a poor objective function anyways:
 - NP-Hard
 - it only gives feedback of “correct” or “not”
 - even if you don’t predict the true label (e.g. you make a mistake), there is a major difference between your model still “thinking” the true label is likely v.s. thinking the true label is “very unlikely”.

- how do give our model better ’feedback’?
 - Seek provide probabilities of all outcomes
 - Then we reward/penalize our model based on its “confidence” of the correct answer...
A better probabilistic model: the soft max

- \(y \in \{1, \ldots k\} \): Let’s turn the probabilistic crank....
- The model: we have \(k \) weight vectors, \(w^{(1)}, w^{(2)}, \ldots w^{(k)} \). For \(\ell \in \{1, \ldots k\} \),

\[
p(y = \ell | x, w^{(1)}, w^{(2)}, \ldots w^{(k)}) = \frac{\exp(w^{(\ell)} \cdot x)}{\sum_{i=1}^{k} \exp(w^{(i)} \cdot x)}
\]

- It is “over-parameterized”:

\[
p_W(y = k | x) = 1 - \sum_{i=1}^{k-1} p_W(y = i | x)
\]

- max. likelihood estimation is still a convex problem!
Aside: why might square loss be 'ok' for binary classification?

▶ Using the square loss for $y \in \{0, 1\}$?
 ▶ it doesn’t look like a great surrogate loss.
 ▶ also, it doesn’t look like a faithful probabilistic model:

▶ What is the “Bayes optimal” predictor for the square loss?

▶ The Bayes optimal predictor for the square loss with $y \in \{0, 1\}$:

▶ Can we utilize something more non-linear in our regression?
Can We Have Nonlinearity and Convexity?

<table>
<thead>
<tr>
<th></th>
<th>expressiveness</th>
<th>convexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear classifiers</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Neural networks</td>
<td>😊</td>
<td>😞</td>
</tr>
</tbody>
</table>
Can We Have Nonlinearity *and* Convexity?

<table>
<thead>
<tr>
<th></th>
<th>expressiveness</th>
<th>convexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear classifiers</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Neural networks</td>
<td>😊</td>
<td>😞</td>
</tr>
</tbody>
</table>

Kernel methods: a family of approaches that give us nonlinear decision boundaries without giving up convexity.
Let’s try to build feature mappings

- Let $\phi(x)$ be a mapping from d-dimensional x to \tilde{d}-dimensional x.
- 2-dimensional example: quadratic interactions
- What do we call these quadratic terms for binary inputs?
Another example

- 2-dimensional example: bias + linear + quadratics interactions

- What do we call these quadratic terms for binary inputs?
Some learning algorithms, like the (lin. or logistic) regression, only need you to specify a way to take *inner products* between your feature vectors.

A kernel function (implicitly) computes this inner product:

$$K(x, v) = \phi(x) \cdot \phi(v)$$

for some ϕ. Typically it is *cheap* to compute $K(\cdot, \cdot)$, and we never explicitly represent $\phi(v)$ for any vector v.

Let’s see!