
Machine Learning (CSE 446):
Variations on our Themes

Sham M Kakade
c© 2019

University of Washington
cse446-staff@cs.washington.edu

0 / 17

Announcements

I Midterm review in section.
(pickup cheat sheets in Allen center front office)

I See class website for another grading scheme.

I HW3 “milestone” due thurs.

I lots of good extra credit!
I Today: Variations on our Themes:

I sgd → mini-batch sgd
I binary classification → multi-class classification
I linear methods → non-linar methods

0 / 17

Our running example for the loss minimization problem

argmin
w

1

N

N∑
n=1

1

2
(yn −w · xn)

2 +
1

2
λ‖w‖2

I How do we run GD/SGD?

I how do we set the step size? λ? the “mini-batch” size?

Theory helps with guidance/(sometimes) auto-tuning. Ultimately, we just have
try to tune these ourselves to get experience. HW3 helps.

1 / 17

review: GD for the square loss

Data: step sizes 〈η(1), . . . , η(K)〉
Result: parameter w
initialize: w(0) = 0;
for k ∈ {1, . . . ,K} do

w(k) = w(k−1) + η(k)
(
1
N

∑
n

(
yn −w(k−1) · xn

)
xn

)
;

end

return w(K);
Algorithm 1: SGD

I the term in red is a costly to compute!

I Even by using matrix multiplications (and not explicitly doing the sum), it is often
too slow.

2 / 17

Gradient Descent Tips

I how do we set the stepsize?
I Remember: we diverge/unstable if the step size is too big!
I you just set it a little lower (like 1/2) less than when things start to diverge/error

starts to drop.

I do we decay it?
No: GD will converge just fine without decaying the learning rate.

I Is GD a good algorithm?
if convex, then it is ’poly time’. but GD is often too slow:
I computing the gradient of the objective function involves a sum over

I SGD: let’s sample the gradient!

3 / 17

SGD: review

Data: step sizes 〈η(1), . . . , η(K)〉
Result: parameter w
initialize: w(0) = 0;
for k ∈ {1, . . . ,K} do

Sample n ∼ Uniform({1, . . . , N});
w(k) = w(k−1) + η(k)

(
yn −w(k−1) · xn

)
xn;

end

return w(K);
Algorithm 2: SGD

I the term in red is a “sampled” gradient.

4 / 17

“mini-batch” SGD for the square loss
Data: step sizes 〈η(1), . . . , η(K)〉
Result: parameter w
initialize: w(0) = 0;
for k ∈ {1, . . . ,K} do

Sample m examples of (x, y) (uniformly at random) from the training set and
let M be the set of these m points;

w(k) = w(k−1) + η(k) 1
m

∑
(x,y)∈M

(
y −w(k−1) · x

)
x;

end

return w(K);
Algorithm 3: SGD

I the term in red is a lower variance, “sampled” gradient.

I how do we choose m?
larger m means lower variance but more computation.

I Matrix algebra can make computing the term in red very fast!
This is critical to get big performance bumps.

5 / 17

SGD Tips: stepsize

I Theory: If you turn down the step sizes at (some prescribed decaying method)
then SGD will converge to the right answer.
The “classical” theory doesn’t provide enough practical guidance.

I Practice:
I starting stepsize: start it “large”:

if it is “too large”, then either you diverge (or nothing improves). set it a little less
(like 1/4) less than this point.

I When do we decay it?
When your training error stops decreasing “enough”.
OR based on a dev set.

I HW: you’ll need to tune it a little. (a slow approach: sometimes you can just start
it somewhat smaller than the “divergent” value and you will find something
reasonable.)

6 / 17

SGD Tips: mini-batching

I Theory: there are diminishing returns to increasing m.
I As you grow m, your “improvements” tend to diminish.
I mini-batch size m “small”: you can turn it up and you will find that you are making

more progress per update.
I mini-batch size m “large”: you can turn it up and you will make roughly the same

amount of progress (so your code will become slower).

I Practice: there are diminishing returns to increasing m.

I How do we set it?
Easy: just keep cranking it up and eventually you’ll see that your code doesn’t get
any faster.

7 / 17

Regularization/complexity control: Tips.

I Theory: really just says that λ controls your “model complexity”.
I we DO know that “early stopping” for GD/SGD is very similar to L2 regularization

for us.
I i.e. if we don’t run for too long, then ‖w‖2 won’t become too big.

I Practice:
I Exact methods (like matrix inverse/least squares): always need to regularize or

something horrible happens....
I GD/SGD: sometimes it works just fine ignoring regularization remember: early

stopping is a form complexity control
I Other times we have to tune it on some dev set.

Fortunately, it is pretty robust to tune, by trying out different “orders of magnitude”
guesses.

8 / 17

Binary classification → Multi-class classification

I suppose y ∈ {1, 2, . . . k}.
I MNIST: we have k = 10 classes. How do we learn?

I Misclassification error:
the fraction of times (often measured in %) in which our prediction of the label
does not agree with the true label.

I Like binary classification, we do not optimize this directly
it is often computationally difficult

9 / 17

Multi-class classification: “one vs all”

I Simplest method: consider each class separately.

I make 10 binary prediction problems:

I Build a separate model of Pr(yclass) = 1|x,wclass).

I Example: build k = 10 separate linear regression models.
HW3!

10 / 17

misclassification error: one perspective...

I directly using misclassification error is a poor objective function anyways:
I NP-Hard
I it only gives feedback of “correct” or “not”
I even if you don’t predict the true label (e.g. you make a mistake), there is a major

difference between your model still “thinking” the true label is likely v.s. thinking
the true label is “very unlikely”.

I how do give our model better ’feedback’?

I Seek provide probabilities of all outcomes
I Then we reward/penalize our model based on its “confidence” of the correct

answer...

11 / 17

A better probabilistic model: the soft max

I y ∈ {1, . . . k}: Let’s turn the probabilistic crank....

I The model: we have k weight vectors, w(1), w(2), . . . w(k). For ` ∈ {1, . . . k},

p(y = `|x,w(1), w(2), . . . w(k)) =
exp(w(`) · x)∑k
i=1 exp(w

(i) · x)

I It is “over-parameterized”:

pW (y = k|x) = 1−
k−1∑
i=1

pW (y = i|x)

I max. likelihood estimation is still a convex problem!

12 / 17

Aside: why might square loss be ’ok’ for binary classification?

I Using the square loss for y ∈ {0, 1}?
I it doesn’t look like a great surrogate loss.
I also, it doesn’t look like a faithful probabilistic model:

I What is the “Bayes optimal” predictor for the square loss?

I The Bayes optimal predictor for the square loss with y ∈ {0, 1}:

I Can we utilize something more non-linear in our regression?

13 / 17

Can We Have Nonlinearity and Convexity?

expressiveness convexity

Linear classifiers / ,
Neural networks , /

14 / 17

Can We Have Nonlinearity and Convexity?

expressiveness convexity

Linear classifiers / ,
Neural networks , /

Kernel methods: a family of approaches that give us nonlinear decision boundaries
without giving up convexity.

14 / 17

Let’s try to build feature mappings

I Let φ(x) be a mapping from d-dimensional x to d̃-dimensional x.

I 2-dimensional example: quadratic interactions

I What do we call these quadratic terms for binary inputs?

15 / 17

Another example

I 2-dimensional example: bias+linear+quadratics interactions

I What do we call these quadratic terms for binary inputs?

16 / 17

The Kernel Trick

I Some learning algorithms, like the (lin. or logistic) regression, only need you to
specify a way to take inner products between your feature vectors.

I A kernel function (implicitly) computes this inner product:

K(x,v) = φ(x) · φ(v)

for some φ. Typically it is cheap to compute K(·, ·), and we never explicitly
represent φ(v) for any vector v.

I Let’s see!

17 / 17

