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Announcements

» Please do Q1 (list your collaborators)
» Gradescope: Please correctly tag your pages.
» HW2: posted this friday!

» Office Hours change for Weds: time change for Tommy Merth
see website
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Unsupervised Learning objectives

» The Our dataset consists only of inputs: {z1,...zxN}.
Suppose we do not have labels.
» Two natural objectives:

» cluster into K groups.
» project your data into less dimensions
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Clustering: What would we like to do?

» Objective function: find k-means, p1, ... pg, which minimizes the following
squared distance cost function:
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» We can also write this objective function in terms of the assignments z;'s. How?

This is the general approach of loss function minimization: find parameters which
make our objection function “small” (and which also “generalizes")
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k-means Convergence Proof Sketch

» The cluster assignments, the z;'s take only finitely many values. So the cluster

v

centers, the p;'s, also must only take a finite number of values. Each time we
update any of them, we will never increase this function:
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L is the objective function of K-Means clustering.

Convergence must occur in a finite number of steps, due to:
L decreases at every step; L can only take on finitely many values.
See CIML, Chapter 15 for more details.

Does the solution depend on the random initialization of the means u,? Yes.

Does K-means converge to the minimal cost solution? No! The objective is an
NP-Hard problem, so we can’t expect any algorithm to minimize the cost without
essentially checking (near to) all assignments.
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Linear Dimensionality Reduction

As before, you only have a training dataset consisting of (x;),.

Is there a way to represent each x; € R? as a lower-dimensional vector?

(Why would we want to do this?)
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Dimension of Greatest Variance

Assume that the data are
centered, i.e., that
mean ((x;);) = 0.

Transformation:

X; <—X;— U

where p is the mean.
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Dimension of Greatest Variance

Assume that the data are
centered, i.e., that
mean ((x;);) = 0.

Transformation:

X; <—X;— U

where 1 is the mean.
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Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
2
[ullz = 1.

p; = X; - u is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of (p1,...,pn) is also 0.
| N
. . . . 2
This implies that the variance of (p1,...,pn) is N Z;pz
1=

The u that gives the greatest variance, then, is:
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s.t. |jul|3 =1

(This is PCA in one dimension!)
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The optimization problem, in terms of matrices
T

X1
Xq
N x d "data matrix’ X =
T
X
> With X, N

argmax || Xul|3
u
st |ulz=1
» The covariance matrix (assuming mean is subtracted):
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and, equivalently,

argmax u'Zu
u
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Deriving the Solution

(You are not responsible for the derivation).
argmax u' Yu, s.t. |[uf3 =1
u

» The Lagrangian encoding of the problem moves the constraint into the objective:

maxm/\inuTEu ~AMJuz-1 = m/\inmaquZu —MJJu? - 1)
u u

» Gradient (first derivatives with respect to u): 2Xu — 2\u
» Setting equal to 0 leads to: A\u = Xu

» You may recognize this as the definition of an eigenvector (u) and eigenvalue ()
for the matrix X.

» \We take the first (largest) eigenvalue.
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Projecting into Multiple Dimensions

So far, we've projected each x; into one dimension.

To get a second projection v, we solve the same problem again, but this time with
another constraint:

argmax v 5, st. [|v|3 =1 and
v

(That is, we want a dimension that’s orthogonal to the u that we found earlier.)

Following the same steps we had for u, we can show that the solution will be the
second eigenvector.
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Principal Components Analysis

Data: unlabeled data with mean 0, X = [x;|xa]- - - [xx] ', and dimensionality
K <d

Result: K-dimensional projection of X

let (A1,...,Ak) be the top K eigenvalues of ¥ = %XTX

and (uy,...,ux) be the corresponding eigenvectors;
let U = [uj|ug|- - |ukl];
return XU;

Algorithm 1: PCA

On your own time, you can read up about many algorithms for finding eigenstuff of a
matrix.
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