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Announcements

I Please do Q1 (list your collaborators)

I Gradescope: Please correctly tag your pages.

I HW2: posted this friday!

I Office Hours change for Weds: time change for Tommy Merth
see website
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Unsupervised Learning objectives

I The Our dataset consists only of inputs: {x1, . . . xN}.
Suppose we do not have labels.

I Two natural objectives:
I cluster into K groups.
I project your data into less dimensions
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Clustering: What would we like to do?

I Objective function: find k-means, µ1, . . . µk, which minimizes the following
squared distance cost function:

N∑
i=1

(
min

k′∈{1,...,k−1}
‖xi − µk′‖2

)
I We can also write this objective function in terms of the assignments zi’s. How?

This is the general approach of loss function minimization: find parameters which
make our objection function “small” (and which also “generalizes”)
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k-means Convergence Proof Sketch

I The cluster assignments, the zi’s take only finitely many values. So the cluster
centers, the µk’s, also must only take a finite number of values. Each time we
update any of them, we will never increase this function:

L(z1, . . . , zN ,µ1, . . . ,µK) =

N∑
i=1

∥∥xi − µzi
∥∥2 ≥ 0

L is the objective function of K-Means clustering.

I Convergence must occur in a finite number of steps, due to:
L decreases at every step; L can only take on finitely many values.
See CIML, Chapter 15 for more details.

I Does the solution depend on the random initialization of the means µ∗? Yes.

I Does K-means converge to the minimal cost solution? No! The objective is an
NP-Hard problem, so we can’t expect any algorithm to minimize the cost without
essentially checking (near to) all assignments.
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Linear Dimensionality Reduction

As before, you only have a training dataset consisting of 〈xi〉Ni=1.

Is there a way to represent each xi ∈ Rd as a lower-dimensional vector?

(Why would we want to do this?)
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Dimension of Greatest Variance

Assume that the data are
centered, i.e., that
mean

(
〈xi〉Ni=1

)
= 0.

Transformation:

xi ← xi − µ

where µ is the mean.
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Projection into One Dimension

Let u be the dimension of greatest variance, and (without loss of generality) let
‖u‖22 = 1.

pi = xi · u is the projection of the nth example onto u.

Since the mean of the data is 0, the mean of 〈p1, . . . , pN 〉 is also 0.

This implies that the variance of 〈p1, . . . , pN 〉 is
1

N

N∑
i=1

p2i .

The u that gives the greatest variance, then, is:

argmax
u

1

N

N∑
i=1

(xi · u)2

s.t. ‖u‖22 = 1

(This is PCA in one dimension!)
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The optimization problem, in terms of matrices

N × d “data matrix” X =


x>1
x>2

...
x>N


I With X,

argmax
u

‖Xu‖22

s.t. ‖u‖22 = 1

I The covariance matrix (assuming mean is subtracted):

Σ =
1

N
X>X =

1

N

N∑
i=1

xix
>
i

and, equivalently,

argmax
u

u>Σu

s.t. ‖u‖22 = 1
7 / 10



Deriving the Solution
(You are not responsible for the derivation).

argmax
u

u>Σu, s.t. ‖u‖22 = 1

I The Lagrangian encoding of the problem moves the constraint into the objective:

max
u

min
λ

u>Σu− λ(‖u‖22 − 1) ⇒ min
λ

max
u

u>Σu− λ(‖u‖22 − 1)

I Gradient (first derivatives with respect to u): 2Σu− 2λu

I Setting equal to 0 leads to: λu = Σu

I You may recognize this as the definition of an eigenvector (u) and eigenvalue (λ)
for the matrix Σ.

I We take the first (largest) eigenvalue.
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Projecting into Multiple Dimensions

So far, we’ve projected each xi into one dimension.

To get a second projection v, we solve the same problem again, but this time with
another constraint:

argmax
v

v>Σv, s.t. ‖v‖22 = 1 and u · v = 0

(That is, we want a dimension that’s orthogonal to the u that we found earlier.)

Following the same steps we had for u, we can show that the solution will be the
second eigenvector.
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Principal Components Analysis

Data: unlabeled data with mean 0, X = [x1|x2| · · · |xN ]>, and dimensionality
K < d

Result: K-dimensional projection of X
let 〈λ1, . . . , λK〉 be the top K eigenvalues of Σ = 1

NX>X
and 〈u1, . . . ,uK〉 be the corresponding eigenvectors;

let U = [u1|u2| · · · |uK ];
return XU;

Algorithm 1: PCA

On your own time, you can read up about many algorithms for finding eigenstuff of a
matrix.
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