Machine Learning (CSE 446):
Train, Dev, and Test Sets

Sham M Kakade
© 2019

University of Washington
csed4d6-staff@cs.washington.edu

1/10



Announcements

» HWO due.

» HW1 posted this week (due in a weeks time).
> Today:

» Model complexity; parameters; and hyperparameters
» Training/ Development/Validation sets

2/10



A Toy Data Set

Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin

18.0
15.0
18.0
16.0
17.0
15.0
14.0
14.0
14.0
15.0
15.0
14.0
15.0
14.0
24.0
22.0
18.0
21.0
27.0
26.0
25.0
24.0

AR PRPPRPOOO 000000000000 000000000000 00 00

307.0
350.0
318.0
304.0
302.0
429.0
454.0
440.0
455.0
390.0
383.0
340.0
400.0
455.0
113.90
198.0
199.0
200.0
97.00
97.00
110.90
107.0

130.90
165.9
150.9
150.9
140.90
198.9
220.0
215.9
225.0
190.9
170.9
160.90
150.9
225.0
95.00
95.00
97.00
85.00
88.00
46.00
87.00
90.00

3504.
3693.
3436.
3433.
3449,
4341,
4354,
4312.
4425,
3850,
3563,
3609.
3761,
3086.
2372.
2833.
2774.
2587.
2130.
1835,
2672.
2430.

12.0
11.5
11.0
12.0
10.5

=
=]
=]

=

=
COUUU® WSS 00 W

PR R R R
'S
uUsuUuuUuoeooUSULeU S

PN
~N o
(S )

14.5

1

NNNWRRPWRPRRERPRERERRBRERRRER

Input: a row in this table;
“features” are columns.

Goal: predict whether mpg is < 23

(“bad” = 0) or above (“good” =
1) given other attributes (other
columns).

201 “good” and 197 “bad”;
guessing the most frequent class
(good) will get 50.5% accuracy.

3/10


https://archive.ics.uci.edu/ml/datasets/Auto+MPG

A Candidate Greedy Algorithm (pseudo-code)

A decision tree 7 : X — V-
» The nodes in the tree are associated with a feature ¢;.

» The associated decision rule for each feature either: 1) branches (based on the
value of the feature) or 2) outputs a prediction.

An (iterative) greedy algorithm:

1. Try each candidate feature ¢; with different candidate parent nodes, compute the
error reduction. Record the feature& parent with the largest reduction in error.

2. Update T create a new node using this feature & parent.
3. Stop if “some criterion” is met. Else go to step 1.

What should be our stopping criterion? Will this work?

4/10



Parameter choices

» How can we use a real valued feature xz[i], where i is the coordinate of the vector
x (e.g. horsepower)?
» a binary: choose a z, and let ¢(z) = 1{z[i] > z}
> a k-ary feature (“bucketing”): set ¢(x) = j (for j € {0,1,2,...k — 1} if
zj Swli] < zjp
How to choose z/the “buckets”?
» other choices: the depth of the tree? the width of the tree? the total number of
nodes?

5/10



Danger: Overfitting

P> the 'x-axis' is typically something like our 'model complexity’ or "how long we run

our algorithm’

» parameters: some parameter choices make sense to fit on the training set (e.g. z)
» hyper-parameters: some don't make any sense (e.g. 'depth’ of the tree).
» How should we fit these parameters? When should we stop our algorithm?

error rate
(lower is better)

A

overfitting

unseen data

training data
>

depth of the decision tree

6/10



Ways to check/prevent for overfitting

» Take our dataset ((z1,v1), (z2,92),..., (zN,yn)) and break it up into (two or)
three datasets.

> Make a training set with “most” of the data.

» Make a dev-elopment set (sometimes called a val-idation set) with some of it:
use this to 'tune’ parameters, e.g. when to stop.

> Make a test set with some of it: use this only to estimate the the true error.

7/10



Avoiding Overfitting by Stopping Early

» Set a maximum tree depth dq.
(also need to set a maximum width w)

» Only consider splits that decrease error by at least some A.

» Only consider splitting a node with more than N,,;, examples.

In each case, we have a hyperparameter (d,,qz, w, A, Npin), which we should tune
on our dev set.

8/10



Avoiding Overfitting by Pruning

» Build a big tree (i.e., let it overfit), call it .

» Forie {1,...,]to|}: greedily choose a set of sibling-leaves in ¢;_; to collapse that
increases error the least; collapse to produce t;.

(Alternately, collapse the split whose contingency table is least surprising under
chance assumptions.)

» Choose the t; that performs best on development data.

9/10



Model Complexity and Generalization error

» Suppose we choose our hypothesis among only a finite set of hypothesis
{f1,... fx} (the set of things we choose from is our 'hypothesis class’).

» Suppose our algorithm chooses the ]?Which is the best on our training error
(sometimes called 'empirical risk minimization").

> generalization error:

gen. error = [¢(f) — e(f)]
Remember: we want both small training error and small generalization error.

» Overfitting: we might be choosing fdue to that (by chance) fended up looking
much better than it actually is. The more things we try (the larger K is the more
likely it is one ends up looking good just due to chance.)

» With 'high probability’ (say probability greater than 95%), we will have that:

log(K)
n
» Crudely: Logarithmic dependence on K is very mild.
But note that log(K) scales linearly in the depth of the tree. (since the K scales
exponentially in the depth). 10/10

gen. error <




