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Announcements

» HWO due.

» HW1 posted this week (due in a weeks time).
> Today:

» Model complexity; parameters; and hyperparameters
» Training/ Development/Validation sets

2/10



A Toy Data Set

Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin
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Input: a row in this table;
“features” are columns.

Goal: predict whether mpg is < 23

(“bad” = 0) or above (“good” =
1) given other attributes (other
columns).

201 “good” and 197 “bad”;
guessing the most frequent class
(good) will get 50.5% accuracy.
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https://archive.ics.uci.edu/ml/datasets/Auto+MPG

A Candidate Greedy Algorithm (pseudo-code)

A decision tree 7 : X — V-
» The nodes in the tree are associated with a feature ¢;.

» The associated decision rule for each feature either: 1) branches (based on the
value of the feature) or 2) outputs a prediction.

An (iterative) greedy algorithm:

1. Try each candidate feature ¢; with different candidate parent nodes, compute the
error reduction. Record the feature& parent with the largest reduction in error.

2. Update T create a new node using this feature & parent.
3. Stop if “some criterion” is met. Else go to step 1.

What should be our stopping criterion? Will this work?
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Parameter choices

» How can we use a real valued feature xz[i], where i is the coordinate of the vector
x (e.g. horsepower)?
» a binary: choose a z, and let ¢(z) = 1{z[i] > z}
> a k-ary feature (“bucketing”): set ¢(x) = j (for j € {0,1,2,...k — 1} if
zj Swli] < zjp
How to choose z/the “buckets”?
» other choices: the depth of the tree? the width of the tree? the total number of
nodes?
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Danger: Overfitting

P> the 'x-axis' is typically something like our 'model complexity’ or "how long we run

our algorithm’

» parameters: some parameter choices make sense to fit on the training set (e.g. z)
» hyper-parameters: some don't make any sense (e.g. 'depth’ of the tree).
» How should we fit these parameters? When should we stop our algorithm?

error rate
(lower is better)

A

overfitting

unseen data

training data
>

depth of the decision tree
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Ways to check/prevent for overfitting

» Take our dataset ((z1,v1), (z2,92),..., (zN,yn)) and break it up into (two or)
three datasets.

> Make a training set with “most” of the data.

» Make a dev-elopment set (sometimes called a val-idation set) with some of it:
use this to 'tune’ parameters, e.g. when to stop.

> Make a test set with some of it: use this only to estimate the the true error.
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Avoiding Overfitting by Stopping Early

» Set a maximum tree depth dq.
(also need to set a maximum width w)

» Only consider splits that decrease error by at least some A.

» Only consider splitting a node with more than N,,;, examples.

In each case, we have a hyperparameter (d,,qz, w, A, Npin), which we should tune
on our dev set.
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Avoiding Overfitting by Pruning

» Build a big tree (i.e., let it overfit), call it .

» Forie {1,...,]to|}: greedily choose a set of sibling-leaves in ¢;_; to collapse that
increases error the least; collapse to produce t;.

(Alternately, collapse the split whose contingency table is least surprising under
chance assumptions.)

» Choose the t; that performs best on development data.
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Model Complexity and Generalization error

» Suppose we choose our hypothesis among only a finite set of hypothesis
{f1,... fx} (the set of things we choose from is our 'hypothesis class’).

» Suppose our algorithm chooses the ]?Which is the best on our training error
(sometimes called 'empirical risk minimization").

> generalization error:

gen. error = [¢(f) — e(f)]
Remember: we want both small training error and small generalization error.

» Overfitting: we might be choosing fdue to that (by chance) fended up looking
much better than it actually is. The more things we try (the larger K is the more
likely it is one ends up looking good just due to chance.)

» With 'high probability’ (say probability greater than 95%), we will have that:

log(K)
n
» Crudely: Logarithmic dependence on K is very mild.
But note that log(K) scales linearly in the depth of the tree. (since the K scales
exponentially in the depth). 10/10

gen. error <




