
Machine Learning (CSE 446):
Train, Dev, and Test Sets

Sham M Kakade
c© 2019

University of Washington
cse446-staff@cs.washington.edu

1 / 10

Announcements

I HW0 due.

I HW1 posted this week (due in a weeks time).
I Today:

I Model complexity; parameters; and hyperparameters
I Training/ Development/Validation sets

2 / 10

A Toy Data Set
Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin

Input: a row in this table;
“features” are columns.

Goal: predict whether mpg is < 23
(“bad” = 0) or above (“good” =
1) given other attributes (other
columns).

201 “good” and 197 “bad”;
guessing the most frequent class
(good) will get 50.5% accuracy.

3 / 10

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

A Candidate Greedy Algorithm (pseudo-code)

A decision tree T : X → Y:

I The nodes in the tree are associated with a feature φi.

I The associated decision rule for each feature either: 1) branches (based on the
value of the feature) or 2) outputs a prediction.

An (iterative) greedy algorithm:

1. Try each candidate feature φi with different candidate parent nodes, compute the
error reduction. Record the feature& parent with the largest reduction in error.

2. Update T : create a new node using this feature & parent.

3. Stop if “some criterion” is met. Else go to step 1.

What should be our stopping criterion? Will this work?

4 / 10

Parameter choices

I How can we use a real valued feature x[i], where i is the coordinate of the vector
x (e.g. horsepower)?
I a binary: choose a z, and let φ(x) = 1{x[i] > z}
I a k-ary feature (“bucketing”): set φ(x) = j (for j ∈ {0, 1, 2, . . . k − 1} if

zj ≤ x[i] ≤ zj+1

How to choose z/the “buckets”?

I other choices: the depth of the tree? the width of the tree? the total number of
nodes?

5 / 10

Danger: Overfitting
I the ’x-axis’ is typically something like our ’model complexity’ or ’how long we run

our algorithm’
I parameters: some parameter choices make sense to fit on the training set (e.g. z)
I hyper-parameters: some don’t make any sense (e.g. ’depth’ of the tree).
I How should we fit these parameters? When should we stop our algorithm?

error rate
(lower is better)

depth of the decision tree

training data

unseen data

overfitting

6 / 10

Ways to check/prevent for overfitting

I Take our dataset 〈(x1, y1), (x2, y2), . . . , (xN , yN)〉 and break it up into (two or)
three datasets.

I Make a training set with “most” of the data.

I Make a dev-elopment set (sometimes called a val-idation set) with some of it:
use this to ’tune’ parameters, e.g. when to stop.

I Make a test set with some of it: use this only to estimate the the true error.

7 / 10

Avoiding Overfitting by Stopping Early

I Set a maximum tree depth dmax .
(also need to set a maximum width w)

I Only consider splits that decrease error by at least some ∆.

I Only consider splitting a node with more than Nmin examples.

In each case, we have a hyperparameter (dmax , w,∆, Nmin), which we should tune
on our dev set.

8 / 10

Avoiding Overfitting by Pruning

I Build a big tree (i.e., let it overfit), call it t0.

I For i ∈ {1, . . . , |t0|}: greedily choose a set of sibling-leaves in ti−1 to collapse that
increases error the least; collapse to produce ti.

(Alternately, collapse the split whose contingency table is least surprising under
chance assumptions.)

I Choose the ti that performs best on development data.

9 / 10

Model Complexity and Generalization error
I Suppose we choose our hypothesis among only a finite set of hypothesis
{f1, . . . fK} (the set of things we choose from is our ’hypothesis class’).

I Suppose our algorithm chooses the f̂ which is the best on our training error
(sometimes called ’empirical risk minimization’).

I generalization error:
gen. error = |ε̂(f̂)− ε(f̂)|

Remember: we want both small training error and small generalization error.
I Overfitting: we might be choosing f̂ due to that (by chance) f̂ ended up looking

much better than it actually is. The more things we try (the larger K is the more
likely it is one ends up looking good just due to chance.)

I With ’high probability’ (say probability greater than 95%), we will have that:

gen. error ≤
√

log(K)

n
I Crudely: Logarithmic dependence on K is very mild.

But note that log(K) scales linearly in the depth of the tree. (since the K scales
exponentially in the depth). 10 / 10

