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Announcements

» Turn in Certification file that you read the website.
> HWO.

» Midterm date: Mon, Feb 11.

> Today:
» Decision Trees, Generalization, and Overfitting.
» training/ and development/validation sets
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A Toy Data Set

Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cylinders; displacement; horsepower; weight; acceleration; year; origin
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Input: a row in this table;
“features” are columns.

Goal: predict whether mpg is < 23

(“bad” = 0) or above (“good” =
1) given other attributes (other
columns).

201 “good” and 197 “bad”;
guessing the most frequent class
(good) will get 50.5% accuracy.
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https://archive.ics.uci.edu/ml/datasets/Auto+MPG

Decision Tree Example

root

197:201
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Error reduction compared to the cylinders stump? i



Decision Tree Example

root
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Error reduction compared to the cylinders stump? i



A Candidate Greedy Algorithm (pseudo-code)

A decision tree 7 : X — V-
» The nodes in the tree are associated with a feature ¢;.

» The associated decision rule for each feature either: 1) branches (based on the
value of the feature) or 2) outputs a prediction.

An (iterative) greedy algorithm:

1. Try each candidate feature ¢; with different candidate parent nodes, compute the
error reduction. Record the feature& parent with the largest reduction in error.

2. Update T create a new node using this feature & parent.
3. Stop if “some criterion” is met. Else go to step 1.

What should be our stopping criterion? Will this work?
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What could go wrong?

Remember, we care about doing well on 'new’ data. Suppose we keep going until the
training error no longer drops?

» Suppose we have “many” possible features?

» Suppose a single feature has many possible values ?
(e.g.how could we split on a continuous feature?)
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Let's back up...

» Suppose we chose some hypothesis f before we see the training data, and we
want to estimate the true loss of f7
» Is training error of f a good estimate of the true loss of f7
N
) =5 D Hui # fle)}
» Is €(f) an unbiased of the true loss?7°
E[e(f)] = e(f)

» What about the variance of €(f)?
1

Var(e(f)) < 1

» |If the CLT starts to kick in (for N 'reasonably’ large, it is should), then with
probability greater than 95% we should have that
1 1
€| — <24 —=—
EI- el <2y 3= 7=

(due that with 95% chance a sample from a Gaussian will be within two standard
deviations of its mean). 7/12



Danger: Overfitting

Let ﬁ be our decision tree after we have added ¢ nodes. Should we expect ’e\(ﬁ) to be

close to e(f;)? Why?

error rate
(lower is better)

A

overfitting

unseen data

training data

>
depth of the decision tree
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Generalization error
» We are choose ft based on our training data AND we are estimating the quality of
ft on this same set of points.
» The generalization error is often referred to as the difference between the

training error of f and the expected error of f:
e(f) —e(f)
» rule of thumb: the 'more’ we change fbased on our training set the larger the

“generalization error” is.
» The fundamental problem of ML is we would like both:

» our training error, €(f), to be small
» our generalization error to be small

» It is usually easy to get one of these two to be small.
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Ways to check/prevent for overfitting

» Take our dataset ((z1,v1), (z2,92),..., (zN,yn)) and break it up into (two or)
three datasets.

> Make a training set with “most” of the data.

» Make a dev-elopment set (sometimes called a val-idation set) with some of it:
use this to 'tune’ parameters, e.g. when to stop.

> Make a test set with some of it: use this only to estimate the the true error.
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Avoiding Overfitting by Stopping Early

» Set a maximum tree depth dq.
(also need to set a maximum width w)

» Only consider splits that decrease error by at least some A.

» Only consider splitting a node with more than N,,;, examples.

In each case, we have a hyperparameter (d,,qz, w, A, Npin), which we should tune
on our dev set.
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Avoiding Overfitting by Pruning

» Build a big tree (i.e., let it overfit), call it .

» Forie {1,...,]to|}: greedily choose a set of sibling-leaves in ¢;_; to collapse that
increases error the least; collapse to produce t;.

(Alternately, collapse the split whose contingency table is least surprising under
chance assumptions.)

» Choose the t; that performs best on development data.
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