
Machine Learning (CSE 446):

Probabilistic Approaches

Sham M Kakade

c� 2019

University of Washington
cse446-staff@cs.washington.edu

0 / 10

 



Announcements

I Midterm was challenging.

I HW3 posted today/tomo.

0 / 10



Probabilistic machine learning:

Probabilistic machine learning:

I define a probabilistic model relating random variables x to y

I estimate its parameters.

0 / 10



Maximum Likelihood Estimation and the Log loss

The principle of maximum likelihood estimation is to choose our parameters to make

our observed data as likely as possible (under our model).

I Mathematically: find ŵ that maximizes the probability of the labels y1, . . . yN
given the inputs x1, . . . xN .

I The Maximum Likelihood Estimator (the ’MLE’) is:

ŵ = argmax
w

NY

i=1

pw(yi | xi)

= argmin
w

NX

i=1

� log pw(yi | xi)

1 / 10

we
define

n.siYe Ga.deprob



Linear Regression-MLE is same as Squared Loss Minimization!

I Linear regression defines pw(Y | X) as follows:

pw(Y | x) = 1

�
p
2⇡

exp�(Y �w · x)2

2�2

this is a modeling assumption.

I the MLE is then:

argmin
w

NX

i=1

� log pw(yi | xi) ⌘ argmin
w

1

N

NX

i=1

(yi �w · xi)
2

| {z }
SquaredLossi(w,b)

2 / 10



A Probabilistic Model for Binary Classification: Logistic Regression

I For Y 2 {�1, 1} define pw,b(Y | X) as:
1. Transform feature vector x via the “activation” function:

a = w · x+ b

2. Transform a into a binomial probability by passing it through the logistic function:

pw,b(Y = +1 | x) = 1

1 + exp�a
=

1

1 + exp� (w · x+ b)

-10 -5 0 5 10

0.
0

0.
4

0.
8

I If we learn pw,b(Y | x), we can (almost) do whatever we like!

3 / 10

expect e

C l 3
pm FHad

a



The MLE for Logistic Regression

I the MLE for the logistic regression model:

argmin
w

NX

i=1

� log pw(yi | xi) = argmin
w

NX

i=1

log (1 + exp(�yiw · xi))

for this expression we need y 2 {�1, 1}
I This is the logistic loss function that we saw earlier.

I How do we compute the MLE?

4 / 10



Loss Minimization & Gradient Descent

w⇤ = argmin
w

1

N

NX

i=1

`(xi, yi,w)| {z }
`i(w)

+R(w)

What is GD here?

What do we do if N is large?

5 / 10

p Yi w W MusaKalt
w9 m t
III peat tow Tse

n
consfqat
nw w aftEEwich es



Stochastic Gradient Descent (SGD): by example

argmin
w

1

N

NX

i=1

(yi �w · xi)
2

I Gradient descent:

I Note we are computing an average. What is a crude way to estimate an average?

I Stochastic gradient descent:

Will it converge?

If the step size in SGD is a constant, we will not converge.

6 / 10

V reece

following
something w w nffffelyi wx.SI
noisy

w w n

in



Stochastic Gradient Descent (SGD): by example

argmin
w

1

N

NX

i=1

(yi �w · xi)
2

I Gradient descent:

I Note we are computing an average. What is a crude way to estimate an average?

I Stochastic gradient descent:

Will it converge? If the step size in SGD is a constant, we will not converge.

6 / 10

in

expectationwearemoting
in the co direction

we w nzcigiii.x.IE
we turn g down



Stochastic Gradient Descent (SGD) (without regularization)

Data: loss functions `(·), training data, number of iterations K, step sizes

h⌘(1), . . . , ⌘(K)i
Result: parameters w 2 Rd

initialize: w(0) = 0;
for k 2 {1, . . . ,K} do

i ⇠ Uniform({1, . . . , N});
w(k) = w(k�1) � ⌘(k) ·rw`i(w(k�1));

end

return w(K)
;

Algorithm 1: SGD

7 / 10

SGD Wo

O
w



Stochastic Gradient Descent: Convergence

w⇤ = argmin
w

1

N

NX

i=1

`i(w)

I w(k)
: our parameter after k updates.

I Thm: Suppose `(·) is convex (and satisfies mild regularity conditions). There

exists a way to decrease our step sizes ⌘(k) over time so that our function value,

F (w(k)) will converge to the minimal function value F (w⇤).

I This Thm is di↵erent from GD in that we need to turn down our step sizes
over time!

8 / 10



How to set learning rates:

w⇤ = argmin
w

1

N

NX

i=1

`i(w)

Theory:

Practice: How do we turn ⌘ down?

I Initial ⌘: start it “large”
too large and things diverge (or are bad)

I Turning it down:

1. sometimes we do not need to cut.

2. “by hand”: cut it down by some constant factor when we see the error doesn’t drop

any more.

3. sometimes we tune the scheme by trying out di↵erent values.

9 / 10

I

0



“Early Stopping”

w⇤ = argmin
w

1

N

NX

i=1

`i(w)

I How do we determine when to stop?

I Sometimes stopping early is itself a natural way to regularize.

10 / 10

imposes
some reg lorrizetdog

X 0

yes
stop early't
based onDev set


