Machine Learning (CSE 446):

Probabilistic Approaches

Sham M Kakade
© 2019

University of Washington
csed446-staff@cs.washington.edu

0/10

Announcements

> Midterm was challenging.
» HWS3 posted today/tomo.

0/10

Probabilistic machine learning:

Probabilistic machine learning:
» define a probabilistic model relating random variables x to y

> estimate its parameters.

0/10

Maximum Likelihood Estimation and the Log loss

The principle of maximum likelihood estimation is to choose our parameters to make
our observed data as likely as possible (under our model).

» Mathematically: find W that maximizes the probability of the labels y1,...yn

given the inputs z1,...xyN. Je_
» The Maximum Likelihood Estimator (the "MLE’) is: p'(@‘F’:J‘Q
solve N /:_JQ
Yo (- w = argmax |{ pw(y; | x;

pe b o
in) —log pw(yi | xi)

=1

1/10

Linear Regression-MLE is same as Squared Loss Minimization!

» Linear regression defines pw (Y | X) as follows:

1 (Y —w-x)?
Y = -

pW(‘ X) U\/ﬂ exXp 202

this is a modeling assumption.
» the MLE is then:
N 1 N
argminy " —log pu (i | x;) = argmin >~ (5 = w - x)°
W w

=1 =1 SquaredLoss;(w,b)

2/10

» For/Y € {—1,1} define pyw (Y | X) as: X
¢ vector X via the “activation” function: GK/C\&\ e

a=w-x+b

2. Transform a into a binomial probability by passing it through the logistic function:

1 1
Y = 1 = = AN
Pw,b(+1]x) 1+ expta> 1+ eXp[: (wW-x+ b%

(Y71 x)

0.8

0.4

0.0

ECES 0 5 10 a_

> If we learn pw (Y | x), we can (almost) do whatever we like!

3/10

The MLE for Logistic Regression

» the MLE for the logistic regression model:

N N
argmin Z — log pw (yi | x;) = argmin Z log (1 + exp(—y;iw - x;))

W =1 W=

for this expression we need y € {—1,1}
» This is the logistic loss function that we saw earlier.
» How do we compute the MLE?

4/10

Loss Minimization & Gradient Descent

(9 o il
% J

i’)/q w* = argmi
2 \/ép/)e‘/qi_ fo Co

What is GD here?

. a
W&'w/%[2??@;)]
What do we do if N is large? C-’E;*/_f//ij}

Z Xis Yi, W

1

5/10

Stochastic Gradient Descent (SGD): by example

: 7l (<)
argvf/nln % ; (yi —w- Xi)2
2 [lo ;“g » Gradient descent:
STy O w0 — -1
'\@ %o

!‘(\ I
» Stochastic gradient descent:

SQMw/Q : T
W & W— % [

Will it converge?

6/10

Stochastic Gradient Descent (SGD): by example

N
1 <
argmin — g (yi — w - x;)° (1

» Gradient descent: Vo Ag»

r2
\ﬁ\ Qﬁmeéaca\f ’F%/Qﬁj[@;_

/
> Note we are computing an average. What is a crude way estimate an average?

» Stochastic gradient descent: L J "
& W A@L(g ~lo- X/)}j
Will it converge? If the step size in SGD is g constant, ill not converge.

we Tt 429/04/14 e FauQ

6/10

Stochastic Gradient Descent (SGD) (without regularization) @
sSeD

Data: loss functions £(-), training data, number of iterations K, step sizes
(nW, ...,k T

Result: parameters w € R¢ .
initialize: w(® = 0; é‘_y\/
for ke {1,...,K} do L

i ~ Uniform({1,..., N1}); v
w®) — wk—1) wgi(w(k—l)); v \[4
end W

return W(K)

W

Algorithm 1: SGD

7/10

Stochastic Gradient Descent: Convergence

N
. .
W = argmin - Z li(w)

» w(k): our parameter after k updates.

» Thm: Suppose /(-) is convex (and satisfies mild regularity conditions). There
exists a way tozecrease our step sizes n%) ovér time so that our function value,
F(w®)) will converge to the minimal function value F(w*).

» This Thm is different from GD in that we need to turn down our step sizes
over time!

8/10

How to set learning rates:

L
wh = argml N Zﬁ-(w)

Neo
(Practice, Pow-deresermadom—
» Initial 7: start it “large”
too large and things diverge (or are bad)
» Turning it down:

1. sometimes we do not need to cut.

2. “by hand": cut it down by some constant factor when we see the error doesn’t drop
any more.

3. sometimes we tune the scheme by trying out different values.

/_\ 9/10

“Early Stopping”

» How do we dete

» Sometimes stopping

I
.) Us; ~

(W) 43_
ine when to stop?

M) You
Ystop early!)

[\OQQJ o) DQ\/, SQ7L

. \
1S So me +(e S
okl
rly is itself a natural way to regularize.

Q>

10/10

