Machine Learning (CSE 446):
Probabilistic Approaches

Sham M Kakade
© 2019

University of Washington
csed446-staff@cs.washington.edu

0/10

Announcements

> Midterm was challenging.
» HWS3 posted today/tomo.

0/10

Probabilistic machine learning:

Probabilistic machine learning:
» define a probabilistic model relating random variables = to y

> estimate its parameters.

0/10

Maximum Likelihood Estimation and the Log loss

The principle of maximum likelihood estimation is to choose our parameters to make
our observed data as likely as possible (under our model).

» Mathematically: find W that maximizes the probability of the labels y1,...yn
given the inputs z1,...zxN.

» The Maximum Likelihood Estimator (the "MLE’) is:

N
W = argmax [[pw(y: | 1)

W=

N
= argmin Z —log pw(¥i | xi)

W =1

1/10

Linear Regression-MLE is same as Squared Loss Minimization!

» Linear regression defines pyw (Y | X) as follows:

(Y —w-x)?
202

pw(Y | x) = exp —

1
oV 2w
this is a modeling assumption.
» the MLE is then:

N N
. 1
argmin Y — log pu (4 | xi) = argmin + >~ (i = w - x1)?
W N —— —

W=t i=1
B " SquaredLoss;(w,b)

2/10

A Probabilistic Model for Binary Classification: Logistic Regression
» For Y € {—1,1} define py (Y | X) as:
1. Transform feature vector x via the “activation” function:
a=w-x+b

2. Transform a into a binomial probability by passing it through the logistic function:

1 1
l+exp—a 1+exp—(W-x+0b)

Pwp(Y = +1|x) =

0.8

0.4

0.0

> If we learn pw (Y | x), we can (almost) do whatever we like!

3/10

The MLE for Logistic Regression

» the MLE for the logistic regression model:

N N
argmin » _ —log pw(y; | X;) = argmin Y _log (1 + exp(—y;w - x;))

A W=

for this expression we need y € {—1,1}
» This is the logistic loss function that we saw earlier.
» How do we compute the MLE?

4/10

Loss Minimization & Gradient Descent

N
wh = arg‘f]nm N Zl 0(x4,yi, W) +R(wW)
= £;(w)

What is GD here?

What do we do if N is large?

5/10

Stochastic Gradient Descent (SGD): by example

1 N
argml NZ - W xZ

» Gradient descent:

» Note we are computing an average. What is a crude way to estimate an average?
» Stochastic gradient descent:

Will it converge?

6/10

Stochastic Gradient Descent (SGD): by example

1 N
argml NZ - W xZ

» Gradient descent:

» Note we are computing an average. What is a crude way to estimate an average?
» Stochastic gradient descent:

Will it converge? If the step size in SGD is a constant, we will not converge.

6/10

Stochastic Gradient Descent (SGD) (without regularization)

Data: loss functions /(-), training data, number of iterations K, step sizes
(M, ..., ntH)
Result: parameters w € R¢
initialize: w(® = 0;
for ke {1,...,K} do
i ~ Uniform({1,...,N});
wk) = wlk=1) _ pk) -Vwﬁi(w(’“‘l));
end
return W(K)

Algorithm 1: SGD

7/10

Stochastic Gradient Descent: Convergence

N
1
* : .
wh = argv{/nm — E_l li(w)

» w(k): our parameter after k updates.

» Thm: Suppose /(-) is convex (and satisfies mild regularity conditions). There
exists a way to decrease our step sizes 1K) over time so that our function value,
F(w®) will converge to the minimal function value F(w™).

» This Thm is different from GD in that we need to turn down our step sizes
over time!

8/10

How to set learning rates:

N
. .
W’ = argmin Zl li(w)
P

Theory:
Practice: How do we turn 1 down?
» Initial n: start it “large”
too large and things diverge (or are bad)
» Turning it down:

1. sometimes we do not need to cut.

2. "by hand”: cut it down by some constant factor when we see the error doesn’t drop
any more.

3. sometimes we tune the scheme by trying out different values.

9/10

“Early Stopping”

wh = argml

Z\H

» How do we determine when to stop?

» Sometimes stopping early is itself a natural way to regularize.

10/10

