
CSE 446: Machine Learning Lecture

Intro to Probabilistic Graphical Models and The EM Algorithm

Instructor: Sham Kakade

1 Basic idea of ’generative models’

We are now going to specify the method in which we believe our data are generated. This does not tell us how to learn
the parameters of the model. However, specifying these procedures are helpful abstractions as they then give us a way
to answer questions such as: what are the document groupings? How dow decided upon what is a good ’rule’ to use
to group our documents? The following approach allows us to address these questions in a principled (and general)
approach.

For example, let us view each document as datapoint. And let us view each document as being represented by the
word counts in the document. So each datapoint is just a collection of word counts (suppose we have M documents
and each document is specified by a big vector of word counts). So how should we group our documents together?

Before we can answer the question, let us take a different viewpoint. For now, let us just specify a procedure for how
our documents are generated; a probabilistic generative model is an underlying model of how our data are created. In
what follows, we will consider a simple ’single topic’ case, we assumed that each datapoint/document has a hidden
topic associated with it. And that the words we observed were generated under a distribution over words implied by
the topic. The learning question (next class!) is how we figure out the topics and (soft) document assignments given
our data, by using our modeling assumptions.

These notes just specify a few generative models.

2 The Expectation Maximization (EM) algorithm for Gaussian Mixtures

2.1 The Mixture of Gaussians Model

This model was first introduced by [1], with an application to evolutionary biology.

Random variables: a “hidden” cluster i ∈ {1 . . . k} and a vector x ∈ Rd.

Parameters: “mixing weights” πi = Pr(topic = i), means: µ1 . . . µj , noise covariance matrices Σ1,Σ2, . . .Σk

The Generative model for a datapoint:

1. sample a cluster i, which has probability πi

2. observe x, where x is the mean µi corrupted with Gaussian noise:

x = µi + η

where η has a multivariate normal distribution, N(0,Σi).
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2.2 Maximum Likelihood Estimation

Suppose we have datapoints x1, . . . xN . The maximum likelihood estimation problem is:

arg max
params

Pr(x1 . . . xN |params) = arg max
params

log Pr(x1 . . . xN |params) (1)

= arg max
params

N∑
n=1

log Pr(xn|params) (2)

where the params are the “mixing weights” πi = Pr(topic = i), means: µ1 . . . µj , noise covariance matrices
Σ1,Σ2, . . .Σk.

Let hn ∈ {1 . . . k} be the unknown hidden cluster associated with datapoint i. Let us examine how we would compute
the probability of any single term:

Pr(xn|params) =

k∑
i=1

Pr(xn, hn = i|params) =

k∑
i=1

πiN(xn|µi,Σi) .

where N(xn|µi,Σi) is the density of xn under a Gaussian distribution. Using this, we have that the optimization
problem is:

arg max
θ

N∑
n=1

log

k∑
i=1

πiN(xn|µi,Σi) .

which shows how the log likelihood function depends on the parameters θ.

2.3 The EM algorithm: an example

The EM algorithm is a general iterative algorithm for learning parameters in models, like this mixture of Gaussians
problem. It is more generally applicable than just for the mixture of Gaussians.

Warmup: K = 2 and d = 1

Assume K = 2 and d = 1. Consider an example where our data are in one dimension, i.e. for all i, xi ∈ R. Let us
also consider the problem of learning a mixture of two Gaussians, so our parameters are π1, π2, µ1, µ2, σ

2
1 , σ

2
2 .

Note that for 1 dimensional Gaussian distributions, the convention is to use σ2 to denote their variances, while for
multivariate Gaussian distributions, the convention is to use Σ for the covariance matrix.

Initialization. The EM algorithm is an alternating minimization algorithm. We start with some guess of these
parameters, say π̂1, π̂2, µ̂1, µ̂2, σ̂

2
1 , σ̂

2
2 , and then alternate between the E and M steps as follows:

The E-step. Using our current estimate of the parameters, estimate the “soft weights” as follows:

zn := Pr(hn = 1|xn) =
Pr(hn = 1, xn)

Pr(xn)
=

π̂1N(xn|µ̂1, σ̂
2
1)

π̂1N(xn|µ̂1, σ̂2
1) + π̂2N(xn|µ̂2, σ̂2

2)
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The M-step. Now update our parameters as follows. For the weights,

π̂1 ←
∑
n zn
N

, π̂2 ←
∑
n(1− zn)

N

the means,

µ̂1 ←
∑
n znxn∑
n zn

, µ̂2 ←
∑
n(1− zn)xn∑
n(1− zn)

and for the variances:

σ̂2
1 ←

∑
n zn(xn − µ̂1)2∑

n zn
, σ̂2

2 ←
∑
n(1− zn)(xn − µ̂2)2∑

n(1− zn)
.

General K and d.

Now suppose our data are in d dimensions and that we would like to fit our model with K Gaussians.

Initialization. Again, we start with some guess of these parameters, say π̂1, . . . π̂K , µ̂1, . . . µ̂K , Σ̂
2
1, . . . Σ̂

2
K . Note

that π̂j is scalar, µ̂j is a d-dimensional vector, and Σ̂j is a d× d matrix. We then alternate between the E and M steps
as follows:

The E-step. Using our current estimate of the parameters, our estimate of the “soft weights” our nowK dimensional.
These are:

zn,j := Pr(hn = j|xn) =
Pr(hn = j, xn)

Pr(xn)
=

π̂jN(xn|µ̂j , Σ̂j)
π̂1N(xn|µ̂1, Σ̂1) + . . .+ π̂KN(xn|µ̂K , Σ̂K)

which is computed for all j ∈ {1, . . .K} and for all datapoints n.

The M-step. For all j ∈ {1, . . .K}, the our parameter updates are as follows: for the weights,

π̂j ←
∑
n zn,j
N

,

the means,

µ̂j ←
∑
n zn,jxn∑
n zn,j

,

and for the variances:

Σ̂j ←
∑
n zn,j(xn − µ̂j)(xn − µ̂j)>∑

n zn,j
.

which where a> denotes the transpose of a vector a.

3 Other common generative models

3.1 “Bag of words” model: a (single) topic model

Suppose every document has T words.
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Random variables: a “hidden” topic i ∈ {1 . . . k} and a T -word outcomes w1, w2, . . . wT which take on some discrete
values.

Parameters: the “mixing weights” πi = Pr(topic = i), the “topics” bwi = Pr(word = w|topic = i)

The generative model for an T word “document”, where every document is only about one topic.

1. sample a “topic” i, which has probability πi

2. gererate T words w1, w2, . . . wT , independently. in particular, we choose word wt as the t-th word with proba-
bility bwti.

Note this generative model ignores the word order, so it is not a particularly faithful generative model.

Due to the ’graph’ (i.e. the conditional independencies implied by the generative model procedure), we can write the
joint probability of the outcome topic i occurring with a document containing the words w1, w2, . . . wT as:

Pr(topic = i and w1, w2, . . . wT ) = Pr(topic = i) Pr(w1, w2, . . . wT |topic = i)

= Pr(topic = i) Pr(w1|topic = i) Pr(w2|topic = i) Pr(wT |topic = i)

= πibw1ibw2i . . . bwT i

where the second to last step follows due to the fact that the words are generated independently given the topic i.

3.1.1 Inference

Suppose we were given a document with w1, w2, . . . wT . One inference question would be what is the probability the
underlying topic is i. By Bayes rule, we have:

Pr(topic = i|w1, w2, . . . wT ) =
1

Pr(w1, w2, . . . wT )
Pr(topic = i and w1, w2, . . . wT )

=
1

Z
πibw1ibw2i . . . bwT i

where Z is a number chosen so that the probabilities sum to 1. Critically, note that Z is not a function of i.

3.1.2 LDA: latent Dirichlet allocation

This is a popular model which allows documents to contain more than one topic.

3.2 Hidden Markov models

Random variables: a “hidden” state sequence z1, z2, . . . zT (which take on some discrete values in some ’hidden state
space’) and T -discrete sequential outcomes w1, w2, . . . wT . Suppose each zi can take one of k outcomes and each wi
can take one of d outcomes.

Parameters: πi, Aji = Pr(zn+1 = j|zt = i), bmi = Pr(xn = m|zt = i)

The Generative model for an t word “document”: for each time t,

1. sample a “hidden” state sequence zn+1, using only the previous outcome zt. The sampling is determined solely
by the parameters {Aji}.
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2. Sample wn+1 using only zn+1. This sampling is based only on the probabilities {bmi}.

Due to the ’graph’ (i.e. the conditional independencies implied by the generative model procedure), we can write the
joint probability of the hidden state sequence z1, z2, . . . zT and the word sequence w1, w2, . . . wT as:

Pr(z1, z2, . . . zT and w1, w2, . . . wT ) = bw1z1Az2z1bw2z2Az3z2 . . . bwT zT

One inference question would be to determine the probability that hidden state is zt = j given some observed sequence
w1, w2, . . . wT , i.e.

Pr(zt = j|w1, w2, . . . wT )

Naively, this computation might look difficult. However, this can be done in a computationally efficiently manner
using the Baum-Welch algorithm, sometimes known as the “Forward-Backward” algorithm.
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