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Announcements

I Midterm on Monday

I You may use a single side of a single sheet of handwritten notes that you prepared.
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Probabilistic machine learning:

Probabilistic machine learning:

I define a probabilistic model relating random variables x to y

I estimate its parameters.
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Maximum Likelihood Estimation and the Log loss

The principle of maximum likelihood estimation is to choose our parameters to make
our observed data as likely as possible (under our model).

I Mathematically: find ŵ that maximizes the probability of the labels y1, . . . yN
given the inputs x1, . . . xN .

I The Maximum Likelihood Estimator (the ’MLE’) is:

ŵ = argmax
w

N∏
i=1

pw(yi | xi)

= argmin
w

N∑
i=1

− log pw(yi | xi)
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Linear Regression-MLE is same as Squared Loss Minimization!

I Linear regression defines pw(Y | X) as follows:

pw(Y | x) =
1

σ
√
2π

exp−(Y −w · x)2

2σ2

this is a modeling assumption.

I the MLE is then:

argmin
w

N∑
i=1

− log pw(yi | xi) ≡ argmin
w

1

N

N∑
i=1

(yi −w · xi)
2︸ ︷︷ ︸

SquaredLossi(w,b)
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A Probabilistic Model for Binary Classification: Logistic Regression
I For Y ∈ {−1, 1} define pw,b(Y | X) as:

1. Transform feature vector x via the “activation” function:

a = w · x+ b

2. Transform a into a binomial probability by passing it through the logistic function:

pw,b(Y = +1 | x) = 1

1 + exp−a
=

1

1 + exp− (w · x+ b)
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I If we learn pw,b(Y | x), we can (almost) do whatever we like!
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The MLE for Logistic Regression

I the MLE for the logistic regression model:

argmin
w

N∑
i=1

− log pw(yi | xi) = argmin
w

N∑
i=1

log (1 + exp(−yiw · xi))

for this expression we need y ∈ {−1, 1}
I This is the logistic loss function that we saw earlier.

I How do we compute the MLE?
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Derivation for Log loss for Logistic Regression
I for Y = 1,

pw(Y = +1 | x) = 1

1 + exp(−w · x)
I For Y = −1,

pw(Y = −1 | x) = 1− pw(Y = 1 | x) = exp(−w · x)
1 + exp(−w · x)

=
1

1 + exp (w · x)
I So we can write for both y ∈ {−1, 1},

pw(Y = y | x) = 1

1 + exp (−yw · x)
(as this agrees with both cases above).

I Finally, we just plug in this expression and we obtain: the MLE for the logistic
regression model:

argmin
w

N∑
i=1

− log pw(yi | xi) = argmin
w

N∑
i=1

log (1 + exp(−yiw · xi))
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Loss Minimization & Gradient Descent

w∗ = argmin
w

1

N

N∑
i=1

`(xi, yi,w)︸ ︷︷ ︸
`i(w)

+R(w)

What is GD here?

What do we do if N is large?
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Stochastic Gradient Descent (SGD): by example

argmin
w

1

N

N∑
i=1

(yi −w · xi)
2

I Gradient descent:

I Note we are computing an average. What is a crude way to estimate an average?

I Stochastic gradient descent:

Will it converge? If the step size in SGD is a constant, we will not converge.
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Stochastic Gradient Descent (SGD) (without regularization)

Data: loss functions `(·), training data, number of iterations K, step sizes
〈η(1), . . . , η(K)〉

Result: parameters w ∈ Rd

initialize: w(0) = 0;
for k ∈ {1, . . . ,K} do

i ∼ Uniform({1, . . . , N});
w(k) = w(k−1) − η(k) · ∇w`i(w

(k−1));

end

return w(K);
Algorithm 1: SGD
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Stochastic Gradient Descent: Convergence

w∗ = argmin
w

1

N

N∑
i=1

`i(w)

I w(k): our parameter after k updates.

I Thm: Suppose `(·) is convex (and satisfies mild regularity conditions). There
exists a way to decrease our step sizes η(k) over time so that our function value,
F (w(k)) will converge to the minimal function value F (w∗).

I This Thm is different from GD in that we need to turn down our step sizes
over time!
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