Machine Learning (CSE 446): Probabilistic Approaches

Sham M Kakade

© 2019

University of Washington cse446-staff@cs.washington.edu

Announcements

- Midterm on Monday
- ► You may use a single side of a single sheet of handwritten notes that you prepared.

Probabilistic machine learning:

Probabilistic machine learning:

- define a probabilistic model relating random variables x to y
- estimate its parameters.

Maximum Likelihood Estimation and the Log loss

The principle of maximum likelihood estimation is to choose our parameters to make our observed data as likely as possible (under our model).

- Mathematically: find $\hat{\mathbf{w}}$ that maximizes the probability of the labels $y_1, \ldots y_N$ given the inputs $x_1, \ldots x_N$.
- ► The Maximum Likelihood Estimator (the 'MLE') is:

$$\hat{\mathbf{w}} = \operatorname*{argmax}_{\mathbf{w}} \prod_{i=1}^{N} p_{\mathbf{w}}(y_i \mid \mathbf{x}_i)$$
$$= \operatorname*{argmin}_{\mathbf{w}} \sum_{i=1}^{N} -\log p_{\mathbf{w}}(y_i \mid \mathbf{x}_i)$$

Linear Regression-MLE is same as Squared Loss Minimization!

• Linear regression defines $p_{\mathbf{w}}(Y \mid X)$ as follows:

$$p_{\mathbf{w}}(Y \mid \mathbf{x}) = \frac{1}{\sigma\sqrt{2\pi}} \exp{-\frac{(Y - \mathbf{w} \cdot \mathbf{x})^2}{2\sigma^2}}$$

this is a modeling assumption.

the MLE is then:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} -\log p_{\mathbf{w}}(y_i \mid \mathbf{x}_i) \equiv \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \underbrace{(y_i - \mathbf{w} \cdot \mathbf{x}_i)^2}_{SquaredLoss_i(\mathbf{w}, b)}$$

A Probabilistic Model for Binary Classification: Logistic Regression

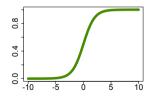
For
$$Y \in \{-1, 1\}$$
 define $p_{\mathbf{w},b}(Y \mid X)$ as:

1. Transform feature vector ${\bf x}$ via the "activation" function:

$$a = \mathbf{w} \cdot \mathbf{x} + b$$

2. Transform a into a binomial probability by passing it through the logistic function:

$$p_{\mathbf{w},b}(Y = +1 \mid \mathbf{x}) = \frac{1}{1 + \exp{-a}} = \frac{1}{1 + \exp{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$



► If we learn $p_{\mathbf{w},b}(Y \mid \mathbf{x})$, we can (almost) do whatever we like!

The MLE for Logistic Regression

▶ the MLE for the logistic regression model:

$$\operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} -\log p_{\mathbf{w}}(y_i \mid \mathbf{x}_i) = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} \log \left(1 + \exp(-y_i \mathbf{w} \cdot \mathbf{x}_i)\right)$$

for this expression we need $y \in \{-1, 1\}$

- ▶ This is the logistic loss function that we saw earlier.
- How do we compute the MLE?

Derivation for Log loss for Logistic Regression

▶ for
$$Y = 1$$
,

$$p_{\mathbf{w}}(Y = +1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})}$$
▶ For $Y = -1$,

$$p_{\mathbf{w}}(Y = -1 \mid \mathbf{x}) = 1 - p_{\mathbf{w}}(Y = 1 \mid \mathbf{x}) = \frac{\exp(-\mathbf{w} \cdot \mathbf{x})}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})} = \frac{1}{1 + \exp(\mathbf{w} \cdot \mathbf{x})}$$

• So we can write for both $y \in \{-1, 1\}$,

$$p_{\mathbf{w}}(Y = y \mid \mathbf{x}) = \frac{1}{1 + \exp(-y\mathbf{w} \cdot \mathbf{x})}$$

(as this agrees with both cases above).

Finally, we just plug in this expression and we obtain: the MLE for the logistic regression model:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} -\log p_{\mathbf{w}}(y_i \mid \mathbf{x}_i) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} \log \left(1 + \exp(-y_i \mathbf{w} \cdot \mathbf{x}_i)\right)$$

Loss Minimization & Gradient Descent

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \underbrace{\ell(\mathbf{x}_i, y_i, \mathbf{w})}_{\ell_i(\mathbf{w})} + R(\mathbf{w})$$

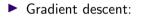
What is GD here?

What do we do if N is large?

<ロ > < 団 > < 巨 > < 巨 > < 巨 > < 巨 > < 巨 > < 巨 < つ < () < 5 / 8

Stochastic Gradient Descent (SGD): by example

$$\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$



Note we are computing an average. What is a crude way to estimate an average?
Stochastic gradient descent:

Will it converge? If the step size in SGD is a constant, we will not converge.

Stochastic Gradient Descent (SGD) (without regularization)

Data: loss functions $\ell(\cdot)$, training data, number of iterations K, step sizes $\langle \eta^{(1)}, \ldots, \eta^{(K)} \rangle$ Result: parameters $\mathbf{w} \in \mathbb{R}^d$ initialize: $\mathbf{w}^{(0)} = \mathbf{0}$; for $k \in \{1, \ldots, K\}$ do $\begin{vmatrix} i \sim \text{Uniform}(\{1, \ldots, N\}); \\ \mathbf{w}^{(k)} = \mathbf{w}^{(k-1)} - \eta^{(k)} \cdot \nabla_{\mathbf{w}} \ell_i(\mathbf{w}^{(k-1)}); \end{vmatrix}$ end return $\mathbf{w}^{(K)}$:

Algorithm 1: SGD

Stochastic Gradient Descent: Convergence

$$\mathbf{w}^* = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^N \ell_i(\mathbf{w})$$

• $\mathbf{w}^{(k)}$: our parameter after k updates.

- ▶ Thm: Suppose $\ell(\cdot)$ is convex (and satisfies mild regularity conditions). There exists a way to decrease our step sizes $\eta^{(k)}$ over time so that our function value, $F(\mathbf{w}^{(k)})$ will converge to the minimal function value $F(\mathbf{w}^*)$.
- This Thm is different from GD in that we need to turn down our step sizes over time!