Machine Learning (CSE 446): Probabilistic Approaches

Sham M Kakade

© 2019

University of Washington cse446-staff@cs.washington.edu

Midterm Announcements

Next Monday

► You may use a single side of a single sheet of handwritten notes that you prepared.

Remember: convexity

• A function $F(\cdot)$ is convex if for all $0 \le t \le 1$, w and w',

 $F((1-t)w + tw') \le (1-t)F(w) + tF(w')$

Gradient Descent

► Want to solve:

$$\min_{w} F(w)$$

► How should we update w?

Gradient Descent

Data: function $F : \mathbb{R}^d \to \mathbb{R}$, number of iterations K, step sizes $\eta^{(1)}, \ldots, \eta^{(K)}$ **Result:** $\mathbf{w} \in \mathbb{R}^d$ initialize: $\mathbf{w}^{(0)} = \mathbf{0}$; for $k \in \{1, \ldots, K\}$ do $| \mathbf{w}^{(k)} = \mathbf{w}^{(k-1)} - \eta^{(k)} \cdot \nabla F(\mathbf{w}^{(k-1)})$; end return $\mathbf{w}^{(K)}$;

Algorithm 1: GRADIENTDESCENT

Gradient Descent: Convergence

- ▶ Letting $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} F(\mathbf{w})$ denote the global minimum
- Let $\mathbf{w}^{(k)}$ be our parameter after k updates.
- Thm: Suppose F is convex and "smooth". Using a fixed step size η (of appropriate length), we have:

$$F(\mathbf{w}^{(k)}) - F(\mathbf{w}^*) \le O\left(\frac{1}{\cdot k}\right)$$

Gradient Descent: Simple example 1

For
$$w \in \mathbb{R}$$
, $F(w) = \frac{1}{2}w^2$
 $w^* = \operatorname{argmin}_* F(w) = 0$
 $\frac{dF}{dw} = w.$

► The update:

$$w^{(k+1)} = w^{(k)} - \eta w^{(k)} = (1 - \eta) w^{(k)}$$

• Always use
$$\eta > 0$$
 (for GD)

For
$$|\eta| < 1$$
, $w^{(k)}$ converges to 0 (quickly!).

• For
$$|\eta| = 1$$
, $w^{(1)} = 0$.

This convergence in one step is 'lucky', due to being in 1dim.

Gradient Descent: Simple example 2

$$w^{(k+1)} = w^{(k)} - \eta w^{(k)}$$

► What happens here?

Gradient Descent: More formal statement

- \blacktriangleright Letting $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} F(\mathbf{w})$ denote the global minimum
- Let $\mathbf{w}^{(k)}$ be our parameter after k updates.
- ▶ Thm: Suppose *F* is convex and "*L*-smooth". Using a **fixed step size** $\eta \leq \frac{1}{L}$, we have:

$$F(\mathbf{w}^{(k)}) - F(\mathbf{w}^*) \le \frac{\|\mathbf{w}^{(0)} - \mathbf{w}^*\|^2}{\eta \cdot k}$$

 \blacktriangleright Smooth functions: for all w,w'

$$\|\nabla F(w) - \nabla F(w')\| \le L \|w - w'\|$$

Proof idea:

1. If our gradient is large, we will make good progress decreasing our function value:

2. If our gradient is small, we must have value near the optimal value:

Today

"Bayes Optimal" Decisions

- ▶ You have a task at hand. The Bayes Optimal decision rule is to do the best you possibly can given full knowledge of the true underlying probability distribution, $\mathcal{D}(x, y)$.
- The Bayes optimal classifier. $\mathcal{D}(x, y)$ is the true probability of (x, y).

$$f^{(\mathsf{BO})}(x) = \operatorname*{argmax}_{y} \mathcal{D}(y \mid x)$$

• Of course, we don't have $\mathcal{D}(y \mid x)$.

Probabilistic machine learning: define a probabilistic model relating random variables x to y and estimate its parameters.

Linear Regression as a Probabilistic Model

Linear regression defines $p_{\mathbf{w}}(Y \mid X)$ as follows:

1. Observe the feature vector \mathbf{x} ; transform it via the activation function:

 $\mu = \mathbf{w} \cdot \mathbf{x}$

2. Let μ be the mean of a normal distribution and define the density:

$$p_{\mathbf{w}}(Y \mid \mathbf{x}) = \frac{1}{\sigma\sqrt{2\pi}} \exp{-\frac{(Y-\mu)^2}{2\sigma^2}}$$

3. Sample Y from $p_{\mathbf{w}}(Y \mid \mathbf{x})$.

Maximum Likelihood Estimation

The principle of maximum likelihood estimation is to choose our parameters to make our observed data as likely as possible (under our model).

- Mathematically: find $\hat{\mathbf{w}}$ that maximizes the probability of the labels $y_1, \ldots y_N$ given the inputs $x_1, \ldots x_N$.
- \blacktriangleright Note, by the i.i.d. assumption, for the ${\cal D}$ we have:

$$\mathcal{D}(y_1, \dots y_N \mid \mathbf{x}_1, \dots \mathbf{x}_N) = \prod_{i=1}^N \mathcal{D}(y_i \mid x_i)$$

The Maximum Likelihood Estimator (the 'MLE') is:

$$\hat{\mathbf{w}} = \operatorname*{argmax}_{\mathbf{w}} \prod_{i=1}^{N} p_{\mathbf{w}}(y_i \mid \mathbf{x}_i)$$

Maximum Likelihood Estimation and the Log loss

The 'MLE' is:

This is referred to as the log loss.

Linear Regression-MLE is (Un-regularized) Squared Loss Minimization!

$$\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} -\log p_{\mathbf{w}}(y_i \mid \mathbf{x}_i) \equiv \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \underbrace{(y_i - \mathbf{w} \cdot \mathbf{x}_i)^2}_{SquaredLoss_i(\mathbf{w}, b)}$$

Where did the variance go?

A Probabilistic Model for Binary Classification: Logistic Regression

For
$$Y \in \{-1, 1\}$$
 define $p_{\mathbf{w},b}(Y \mid X)$ as:

1. Transform feature vector ${\bf x}$ via the "activation" function:

$$a = \mathbf{w} \cdot \mathbf{x} + b$$

2. Transform a into a binomial probability by passing it through the logistic function:

$$p_{\mathbf{w},b}(Y = +1 \mid \mathbf{x}) = \frac{1}{1 + \exp{-a}} = \frac{1}{1 + \exp{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$

• If we learn $p_{\mathbf{w},b}(Y \mid \mathbf{x})$, we do more than just classification!