Machine Learning (CSE 446):
Probabilistic Approaches

Sham M Kakade
© 2019

University of Washington
cse446-staff@cs.washington.edu
Midterm Announcements

▶ Next Monday
▶ You may use a single side of a single sheet of handwritten notes that you prepared.
Remember: convexity

A function $F(\cdot)$ is convex if for all $0 \leq t \leq 1$, w and w',

$$F((1-t)w+tw') \leq (1-t)F(w)+tF(w')$$
Gradient Descent

Want to solve:

\[\min_w F(w) \]

How should we update \(w \)?
Gradient Descent

Data: function $F : \mathbb{R}^d \to \mathbb{R}$, number of iterations K, step sizes $\eta^{(1)}, \ldots, \eta^{(K)}$

Result: $w \in \mathbb{R}^d$

initialize: $w^{(0)} = 0$;

for $k \in \{1, \ldots, K\}$ do
 \[w^{(k)} = w^{(k-1)} - \eta^{(k)} \cdot \nabla F(w^{(k-1)}) \]

end

return $w^{(K)}$;

Algorithm 1: \textsc{GradientDescent}
Gradient Descent: Convergence

- Letting $w^* = \text{argmin}_w F(w)$ denote the global minimum
- Let $w^{(k)}$ be our parameter after k updates.
- Thm: Suppose F is convex and “smooth”. Using a fixed step size η (of appropriate length), we have:

$$F(w^{(k)}) - F(w^*) \leq O\left(\frac{1}{k}\right)$$
Gradient Descent: Simple example 1

- For $w \in \mathbb{R}$, $F(w) = \frac{1}{2}w^2$
- $w^* = \arg\min_w F(w) = 0$
- $\frac{dF}{dw} = w$
- The update:
 \[w^{(k+1)} = w^{(k)} - \eta w^{(k)} = (1 - \eta)w^{(k)} \]
- Always use $\eta > 0$ (for GD)
- For $\eta \geq 2$, $w^{(k)}$ does not converge. (diverges for η strictly above 2).
- For $|\eta| < 1$, $w^{(k)}$ converges to 0 (quickly!).
- For $|\eta| = 1$, $w^{(1)} = 0$.
 This convergence in one step is 'lucky', due to being in 1dim.
Gradient Descent: Simple example 2

- For $w \in \mathbb{R}^2$, $F(w) = \frac{1}{2} w^\top \text{diag}(1, 2) w = w_1^2 + 2w_2^2$
- $w^* = \arg\min_w F(w) = 0$
- $\nabla F(w) = (w_1, 2w_2)^\top$.
- The update:
 \[w^{(k+1)} = w^{(k)} - \eta w^{(k)} \]
- What happens here?
Gradient Descent: More formal statement

- Letting $w^* = \text{argmin}_w F(w)$ denote the global minimum
- Let $w^{(k)}$ be our parameter after k updates.
- Thm: Suppose F is convex and \(\text{“} L\text{-smooth”} \). Using a fixed step size $\eta \leq \frac{1}{L}$, we have:

\[
F(w^{(k)}) - F(w^*) \leq \frac{\|w^{(0)} - w^*\|^2}{\eta \cdot k}
\]

- Smooth functions: for all w, w'

\[
\|\nabla F(w) - \nabla F(w')\| \leq L\|w - w'\|
\]

- Proof idea:
 1. If our gradient is large, we will make good progress decreasing our function value:

 2. If our gradient is small, we must have value near the optimal value:
“Bayes Optimal” Decisions

▶ You have a task at hand. The Bayes Optimal decision rule is to do the best you possibly can given full knowledge of the true underlying probability distribution, \(D(x, y) \).

▶ The Bayes optimal classifier. \(D(x, y) \) is the true probability of \((x, y)\).

\[
 f^{(BO)}(x) = \arg\max_y D(y \mid x)
\]

▶ Of course, we don’t have \(D(y \mid x) \).

Probabilistic machine learning: define a probabilistic model relating random variables \(x \) to \(y \) and estimate its parameters.
Linear Regression as a Probabilistic Model

Linear regression defines \(p_w(Y \mid X) \) as follows:

1. Observe the feature vector \(x \); transform it via the activation function:
 \[
 \mu = w \cdot x
 \]

2. Let \(\mu \) be the mean of a normal distribution and define the density:
 \[
 p_w(Y \mid x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(Y - \mu)^2}{2\sigma^2} \right)
 \]

3. Sample \(Y \) from \(p_w(Y \mid x) \).
Maximum Likelihood Estimation

The principle of maximum likelihood estimation is to choose our parameters to make our observed data as likely as possible (under our model).

- Mathematically: find \hat{w} that maximizes the probability of the labels $y_1, \ldots y_N$ given the inputs $x_1, \ldots x_N$.

- Note, by the i.i.d. assumption, for the D we have:

$$D(y_1, \ldots y_N \ | \ x_1, \ldots x_N) = \prod_{i=1}^{N} D(y_i \ | \ x_i)$$

- The Maximum Likelihood Estimator (the 'MLE') is:

$$\hat{w} = \arg\max_w \prod_{i=1}^{N} p_w(y_i \ | \ x_i)$$
Maximum Likelihood Estimation and the Log loss

The 'MLE' is:

\[
\hat{w} = \arg\max_w \prod_{i=1}^{N} p_w(y_i | x_i)
\]

\[
= \arg\max_w \log \prod_{i=1}^{N} p_w(y_i | x_i)
\]

\[
= \arg\max_w \sum_{i=1}^{N} \log p_w(y_i | x_i)
\]

\[
= \arg\min_w \sum_{i=1}^{N} -\log p_w(y_i | x_i)
\]

This is referred to as the **log loss**.
Linear Regression-MLE is (Un-regularized) Squared Loss Minimization!

\[
\arg\min_{\mathbf{w}} \sum_{i=1}^{N} - \log p_{\mathbf{w}}(y_i \mid \mathbf{x}_i) \equiv \arg\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2
\]

\(\text{SquaredLoss}_i(\mathbf{w},b) \)

Where did the variance go?
A Probabilistic Model for Binary Classification: Logistic Regression

For $Y \in \{-1, 1\}$ define $p_{w,b}(Y \mid X)$ as:

1. Transform feature vector x via the “activation” function:

$$a = w \cdot x + b$$

2. Transform a into a binomial probability by passing it through the logistic function:

$$p_{w,b}(Y = +1 \mid x) = \frac{1}{1 + \exp(-a)} = \frac{1}{1 + \exp(-(w \cdot x + b))}$$

If we learn $p_{w,b}(Y \mid x)$, we do more than just classification!