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Midterm Announcements

I Next Monday

I You may use a single side of a single sheet of handwritten notes that you prepared.
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Remember: convexity

I A function F (·) is convex if for all
0 ≤ t ≤ 1, w and w′,

F ((1−t)w+tw′) ≤ (1−t)F (w)+tF (w′)
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Gradient Descent

I Want to solve:

min
w
F (w)

I How should we update w?
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Gradient Descent

Data: function F : Rd → R, number of iterations K, step sizes η(1), . . . , η(K)

Result: w ∈ Rd

initialize: w(0) = 0;
for k ∈ {1, . . . ,K} do

w(k) = w(k−1) − η(k) · ∇F (w(k−1));
end

return w(K);
Algorithm 1: GradientDescent
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Gradient Descent: Convergence

I Letting w∗ = argminw F (w) denote the global minimum

I Let w(k) be our parameter after k updates.

I Thm: Suppose F is convex and “smooth”. Using a fixed step size η (of
appropriate length), we have:

F (w(k))− F (w∗) ≤ O
(

1

·k

)
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Gradient Descent: Simple example 1

I For w ∈ R, F (w) = 1
2w

2

I w∗ = argmin∗ F (w) = 0

I dF
dw = w.

I The update:
w(k+1) = w(k) − ηw(k) = (1− η)w(k)

I Always use η > 0 (for GD)

I For η ≥ 2, w(k) does not converge.
(diverges for η strictly above 2).

I For |η| < 1, w(k) converges to 0 (quickly!).

I For |η| = 1, w(1) = 0.
This convergence in one step is ’lucky’, due to being in 1dim.
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Gradient Descent: Simple example 2

I For w ∈ R2, F (w) = 1
2w
>diag(1, 2)w = w2

1 + 2w2
2

I w∗ = argminw F (w) = 0

I ∇F (w) = (w1, 2w2)
>.

I The update:
w(k+1) = w(k) − ηw(k)

I What happens here?
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Gradient Descent: More formal statement

I Letting w∗ = argminw F (w) denote the global minimum

I Let w(k) be our parameter after k updates.

I Thm: Suppose F is convex and “L-smooth”. Using a fixed step size η ≤ 1
L , we

have:

F (w(k))− F (w∗) ≤ ‖w
(0) −w∗‖2

η · k

I Smooth functions: for all w,w′

‖∇F (w)−∇F (w′)‖ ≤ L‖w − w′‖

I Proof idea:

1. If our gradient is large, we will make good progress decreasing our function value:

2. If our gradient is small, we must have value near the optimal value:
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Today

2 / 8



“Bayes Optimal” Decisions

I You have a task at hand. The Bayes Optimal decision rule is to do the best you
possibly can given full knowledge of the true underlying probability distribution,
D(x, y).

I The Bayes optimal classifier. D(x, y) is the true probability of (x, y).

f (BO)(x) = argmax
y
D(y | x)

I Of course, we don’t have D(y | x).

Probabilistic machine learning: define a probabilistic model relating random
variables x to y and estimate its parameters.
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Linear Regression as a Probabilistic Model

Linear regression defines pw(Y | X) as follows:

1. Observe the feature vector x; transform it via the activation function:

µ = w · x

2. Let µ be the mean of a normal distribution and define the density:

pw(Y | x) =
1

σ
√
2π

exp−(Y − µ)2

2σ2

3. Sample Y from pw(Y | x).
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Maximum Likelihood Estimation

The principle of maximum likelihood estimation is to choose our parameters to make
our observed data as likely as possible (under our model).

I Mathematically: find ŵ that maximizes the probability of the labels y1, . . . yN
given the inputs x1, . . . xN .

I Note, by the i.i.d. assumption, for the D we have:

D(y1, . . . yN | x1, . . .xN ) =

N∏
i=1

D(yi|xi)

I The Maximum Likelihood Estimator (the ’MLE’) is:

ŵ = argmax
w

N∏
i=1

pw(yi | xi)
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Maximum Likelihood Estimation and the Log loss

I The ’MLE’ is:

ŵ = argmax
w

N∏
i=1

pw(yi | xi)

= argmax
w

log

N∏
i=1

pw(yi | xi)

= argmax
w

N∑
i=1

log pw(yi | xi)

= argmin
w

N∑
i=1

− log pw(yi | xi)

I This is referred to as the log loss.
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Linear Regression-MLE is (Un-regularized) Squared Loss Minimization!

argmin
w

N∑
i=1

− log pw(yi | xi) ≡ argmin
w

1

N

N∑
i=1

(yi −w · xi)
2︸ ︷︷ ︸

SquaredLossi(w,b)

Where did the variance go?
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A Probabilistic Model for Binary Classification: Logistic Regression
I For Y ∈ {−1, 1} define pw,b(Y | X) as:

1. Transform feature vector x via the “activation” function:

a = w · x+ b

2. Transform a into a binomial probability by passing it through the logistic function:

pw,b(Y = +1 | x) = 1

1 + exp−a
=

1

1 + exp− (w · x+ b)
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I If we learn pw,b(Y | x), we do more than just classification!
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