
Machine Learning (CSE 446):
The Perceptron Algorithm

Sham M Kakade
c© 2019

University of Washington
cse446-staff@cs.washington.edu

0 / 11

Announcements

I HW1 posted.

I Today: the perceptron algo

0 / 11

Is there a happy medium?

I Decision trees (that aren’t too deep): use relatively few features to classify.

I If we want to use ’all’ the features, then we need a deep (high complexity)
decision tree (so overfitting will be more of a concern).

I Is there a ’low complexity’ method (something which is better at keeping the
generalization error small) which is able to utilize all the features for prediction?

I One idea:
A ’linear classifier’: use all features, but weight them.

1 / 11

Inspiration from Neurons
Image from Wikimedia Commons.

x[1]

…

w[1] ×

x[2] w[2] ×

x[3] w[3] ×

x[d] w[d] ×

∑

b

!

fire, or not?
ŷ

bias
parameter

weight
parameters

“activation” output

input

Input signals come in through dendrites, output signal passes out through the axon.

2 / 11

A “parametric” Hypothesis
I Consider using a “linear classifier” :

f(x) = sign (w · x+ b)

where w ∈ Rd and b is a scalar.
I Here sign(z) is the function which is 1 if z ≥ 0 and −1 otherwise.

(Let us say that Y = {−1, 1}.)
I Notation: x ∈ Rd; x[i] denotes i− th coordinate; remember that:

w · x =

d∑
j=1

w[j] · x[j]

I Learning requires us to set the weights w and the bias b.
I (convenience) we can always append 1 to the vector x through the concatenation

x← (x, 1) .

This transformation allows us to absorb the bias b into the last component of the
weight vector.

3 / 11

Geometrically...

I What does the decision boundary look like?

4 / 11

What would we like to do?

ε̂(w) =
1

N

N∑
i=1

1{yi 6= sign(w · xi)}

I Optimization problem: find a classifier which minimizes the classification loss on
the training dataset D:

min
w
ε̂(w)

I Problem: (in general) this is an NP-Hard problem.

I Let’s ignore this, and think of an algorithm.

This is the general approach of loss function minimization: find parameters which
make our training error “small” (and which also generalizes)

5 / 11

The Perceptron Leaning Algorithm (Rosenblatt, 1958)

I Let’s think of an online algorithm, where we try to update w as we examine each
training point (xi, yi), one at a time.

I Consider the ’epoch based’ algorithm:

1. For all (x, y) in our training set:
2. Choose a point (x, y) without replacement from D:

Let ŷ = sign(w · x)
If ŷ = y, then do not update:

wt+1 = wt

If ŷ 6= y,
wt+1 = wt + yx

Return to the first step.

I When to stop?

6 / 11

Parameters and Convergence

This is the first supervised algorithm we have seen with (no-trivial) real valued
parameters, w.

I The perceptron learning algorithm’s sole hyperparameter is E, the number of
epochs (passes over the training data). How should we tune E?
use a Dev set.

I Basic question: will the algorithm converge or not?
I Can you say what has to occur for the algorithm to converge? (Novikoff, 1962)
I Can we understand when it will never converge? (Minsky and Papert, 1969)

7 / 11

When does the perceptron not converge?

8 / 11

Linear Separability

A dataset D = 〈(xn, yn)〉Nn=1 is linearly separable if there exists some linear classifier
(defined by w, b) such that, for all n, yn = sign (w · xn + b).

9 / 11

The Perceptron Convergence

I Again taking b = 0 (absorbing it into w).

I Margin def: Suppose the data are linearly separable, and all data points are γ away
from the separating hyperplane. Precisely, there exists a w∗, which we can assume
to be of unit norm (without loss of generality), such that for all (x, y) ∈ D.

y (w∗ · x) ≥ γ

γ is the margin.

Theorem: (Novikoff, 1962) Suppose the inputs bounded such that ‖x‖ ≤ R. Assume
our data D is linearly separable with margin γ. Then the perceptron algorithm will
make at most R2

γ2
mistakes.

(This implies that at most O(N
γ2
) updates, after which time wt never changes.)

10 / 11

Proof of the “Mistake Lemma”
I Let Mt be the number of mistakes at time t.

If we make a mistake using wt on (x, y), then observe that ywt · x ≤ 0.
I Suppose we make a mistake at time t:

w∗ · wt = w∗ · (wt−1 + yx) = w∗ · wt−1 + yw∗ · x ≥ w∗ · wt−1 + γ .

Since w0 = 0 and w∗ · wt grows by γ every time we make a mistake, this implies
that w∗ · wt ≥ γMt.

I Also, if we make a mistake at time t (using that ywt · x ≤ 0),

‖wt‖2 = ‖wt−1‖2 + 2ywt−1 · x+ ||x||2 ≤ ‖wt−1‖2 + 0 + ||x||2 ≤ ‖wt−1‖2 +R2 .

Since ‖wt‖2 grows by R2 on every mistake, this implies ‖wt‖2 ≤ R2Mt and so
‖wt‖ ≤ R

√
Mt.

I Now we have that:

γMt ≤ w∗ · wt ≤ ‖w∗‖‖wt‖ ≤ R
√
Mt .

solving for Mt completes the proof.
11 / 11

References I

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, 1969.

A. B. Novikoff. On convergence proofs on perceptrons. In Proceedings of the
Symposium on the Mathematical Theory of Automata, 1962.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–408, 1958.

11 / 11

	References

