Machine Learning (CSE 446): The Perceptron Algorithm

Sham M Kakade

© 2019

University of Washington cse446-staff@cs.washington.edu

Announcements

- ► HW1 posted.
- ► Today: the perceptron algo

Is there a happy medium?

- Decision trees (that aren't too deep): use relatively few features to classify.
- If we want to use 'all' the features, then we need a deep (high complexity) decision tree (so overfitting will be more of a concern).
- Is there a 'low complexity' method (something which is better at keeping the generalization error small) which is able to utilize all the features for prediction?

One idea:

A 'linear classifier': use all features, but weight them.

Inspiration from Neurons

Image from Wikimedia Commons.

Input signals come in through dendrites, output signal passes out through the axon.

A "parametric" Hypothesis

► Consider using a "linear classifier" :

$$f(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}\right)$$

where $w \in \mathbb{R}^d$ and b is a scalar.

► Here sign(z) is the function which is 1 if z ≥ 0 and -1 otherwise. (Let us say that Y = {-1, 1}.)

▶ Notation: $x \in \mathbb{R}^d$; x[i] denotes i - th coordinate; remember that:

$$w \cdot x = \sum_{j=1}^d w[j] \cdot x[j]$$

• Learning requires us to set the weights \mathbf{w} and the bias b.

 \blacktriangleright (convenience) we can always append 1 to the vector x through the concatenation

$$x \leftarrow (x, 1)$$
.

This transformation allows us to absorb the bias b into the last component of the weight vector.

Geometrically...

What does the decision boundary look like?

What would we like to do?

$$\widehat{\epsilon}(w) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}\{y_i \neq \mathsf{sign}(w \cdot x_i)\}$$

• **Optimization problem:** find a classifier which minimizes the classification loss on the training dataset *D*:

$$\min_w \widehat{\epsilon}(w)$$

- ▶ Problem: (in general) this is an NP-Hard problem.
- Let's ignore this, and think of an algorithm.

This is the general approach of loss function minimization: find parameters which make our training error "small" (and which also generalizes)

The Perceptron Leaning Algorithm (Rosenblatt, 1958)

- Let's think of an **online** algorithm, where we try to update w as we examine each training point (x_i, y_i), one at a time.
- Consider the 'epoch based' algorithm:
 - 1. For all (x, y) in our training set:
 - 2. Choose a point (x, y) without replacement from D: Let $\hat{y} = sign(w \cdot x)$ If $\hat{y} = y$, then do not update:

$$w_{t+1} = w_t$$

If $\widehat{y} \neq y$,

$$w_{t+1} = w_t + yx$$

Return to the first step.

When to stop?

Parameters and Convergence

This is the first supervised algorithm we have seen with (no-trivial) real valued **parameters**, w.

- The perceptron learning algorithm's sole hyperparameter is E, the number of epochs (passes over the training data). How should we tune E? use a Dev set.
- Basic question: will the algorithm converge or not?
 - Can you say what has to occur for the algorithm to converge? (Novikoff, 1962)
 - Can we understand when it will *never* converge? (Minsky and Papert, 1969)

When does the perceptron not converge?

Linear Separability

A dataset $D = \langle (\mathbf{x}_n, y_n) \rangle_{n=1}^N$ is **linearly separable** if there exists some linear classifier (defined by \mathbf{w}, b) such that, for all $n, y_n = \text{sign}(\mathbf{w} \cdot \mathbf{x}_n + b)$.

The Perceptron Convergence

• Again taking b = 0 (absorbing it into w).

Margin def: Suppose the data are linearly separable, and all data points are γ away from the separating hyperplane. Precisely, there exists a w_{*}, which we can assume to be of unit norm (without loss of generality), such that for all (x, y) ∈ D.

$$y\left(w_*\cdot x\right) \ge \gamma$$

 γ is the margin.

Theorem: (Novikoff, 1962) Suppose the inputs bounded such that $||x|| \leq R$. Assume our data D is linearly separable with margin γ . Then the perceptron algorithm will make at most $\frac{R^2}{\gamma^2}$ mistakes. (This implies that at most $O(\frac{N}{\gamma^2})$ updates, after which time w_t never changes.)

Proof of the "Mistake Lemma"

- Let M_t be the number of mistakes at time t. If we make a mistake using w_t on (x, y), then observe that $yw_t \cdot x \leq 0$.
- Suppose we make a mistake at time *t*:

$$w_* \cdot w_t = w_* \cdot (w_{t-1} + yx) = w_* \cdot w_{t-1} + yw_* \cdot x \ge w_* \cdot w_{t-1} + \gamma.$$

Since $w_0 = 0$ and $w_* \cdot w_t$ grows by γ every time we make a mistake, this implies that $w_* \cdot w_t \ge \gamma M_t$.

Also, if we make a mistake at time t (using that $yw_t \cdot x \leq 0$),

 $\|w_t\|^2 = \|w_{t-1}\|^2 + 2yw_{t-1} \cdot x + \|x\|^2 \le \|w_{t-1}\|^2 + 0 + \|x\|^2 \le \|w_{t-1}\|^2 + R^2.$ Since $\|w_t\|^2$ grows by R^2 on every mistake, this implies $\|w_t\|^2 \le R^2 M_t$ and so $\|w_t\| \le R\sqrt{M_t}.$

Now we have that:

$$\gamma M_t \le w_* \cdot w_t \le \|w_*\| \|w_t\| \le R \sqrt{M_t}.$$

solving for M_t completes the proof.

- M. Minsky and S. Papert. *Perceptrons: An Introduction to Computational Geometry*. MIT Press, Cambridge, MA, 1969.
- A. B. Novikoff. On convergence proofs on perceptrons. In *Proceedings of the Symposium on the Mathematical Theory of Automata*, 1962.
- Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65:386–408, 1958.