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Announcements

I HW1 posted.

I Today: the perceptron algo
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Is there a happy medium?

I Decision trees (that aren’t too deep): use relatively few features to classify.

I If we want to use ’all’ the features, then we need a deep (high complexity)
decision tree (so overfitting will be more of a concern).

I Is there a ’low complexity’ method (something which is better at keeping the
generalization error small) which is able to utilize all the features for prediction?

I One idea:
A ’linear classifier’: use all features, but weight them.
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Inspiration from Neurons
Image from Wikimedia Commons.
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Input signals come in through dendrites, output signal passes out through the axon.
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A “parametric” Hypothesis
I Consider using a “linear classifier” :

f(x) = sign (w · x+ b)

where w ∈ Rd and b is a scalar.
I Here sign(z) is the function which is 1 if z ≥ 0 and −1 otherwise.

(Let us say that Y = {−1, 1}.)
I Notation: x ∈ Rd; x[i] denotes i− th coordinate; remember that:

w · x =

d∑
j=1

w[j] · x[j]

I Learning requires us to set the weights w and the bias b.
I (convenience) we can always append 1 to the vector x through the concatenation

x← (x, 1) .

This transformation allows us to absorb the bias b into the last component of the
weight vector.
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Geometrically...

I What does the decision boundary look like?
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What would we like to do?

ε̂(w) =
1

N

N∑
i=1

1{yi 6= sign(w · xi)}

I Optimization problem: find a classifier which minimizes the classification loss on
the training dataset D:

min
w
ε̂(w)

I Problem: (in general) this is an NP-Hard problem.

I Let’s ignore this, and think of an algorithm.

This is the general approach of loss function minimization: find parameters which
make our training error “small” (and which also generalizes)
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The Perceptron Leaning Algorithm (Rosenblatt, 1958)

I Let’s think of an online algorithm, where we try to update w as we examine each
training point (xi, yi), one at a time.

I Consider the ’epoch based’ algorithm:

1. For all (x, y) in our training set:
2. Choose a point (x, y) without replacement from D:

Let ŷ = sign(w · x)
If ŷ = y, then do not update:

wt+1 = wt

If ŷ 6= y,
wt+1 = wt + yx

Return to the first step.

I When to stop?
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Parameters and Convergence

This is the first supervised algorithm we have seen with (no-trivial) real valued
parameters, w.

I The perceptron learning algorithm’s sole hyperparameter is E, the number of
epochs (passes over the training data). How should we tune E?
use a Dev set.

I Basic question: will the algorithm converge or not?
I Can you say what has to occur for the algorithm to converge? (Novikoff, 1962)
I Can we understand when it will never converge? (Minsky and Papert, 1969)
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When does the perceptron not converge?

8 / 11



Linear Separability

A dataset D = 〈(xn, yn)〉Nn=1 is linearly separable if there exists some linear classifier
(defined by w, b) such that, for all n, yn = sign (w · xn + b).

9 / 11



The Perceptron Convergence

I Again taking b = 0 (absorbing it into w).

I Margin def: Suppose the data are linearly separable, and all data points are γ away
from the separating hyperplane. Precisely, there exists a w∗, which we can assume
to be of unit norm (without loss of generality), such that for all (x, y) ∈ D.

y (w∗ · x) ≥ γ

γ is the margin.

Theorem: (Novikoff, 1962) Suppose the inputs bounded such that ‖x‖ ≤ R. Assume
our data D is linearly separable with margin γ. Then the perceptron algorithm will
make at most R2

γ2
mistakes.

(This implies that at most O(N
γ2
) updates, after which time wt never changes. )
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Proof of the “Mistake Lemma”
I Let Mt be the number of mistakes at time t.

If we make a mistake using wt on (x, y), then observe that ywt · x ≤ 0.
I Suppose we make a mistake at time t:

w∗ · wt = w∗ · (wt−1 + yx) = w∗ · wt−1 + yw∗ · x ≥ w∗ · wt−1 + γ .

Since w0 = 0 and w∗ · wt grows by γ every time we make a mistake, this implies
that w∗ · wt ≥ γMt.

I Also, if we make a mistake at time t (using that ywt · x ≤ 0),

‖wt‖2 = ‖wt−1‖2 + 2ywt−1 · x+ ||x||2 ≤ ‖wt−1‖2 + 0 + ||x||2 ≤ ‖wt−1‖2 +R2 .

Since ‖wt‖2 grows by R2 on every mistake, this implies ‖wt‖2 ≤ R2Mt and so
‖wt‖ ≤ R

√
Mt.

I Now we have that:

γMt ≤ w∗ · wt ≤ ‖w∗‖‖wt‖ ≤ R
√
Mt .

solving for Mt completes the proof.
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