Machine Learning (CSE 446):
The Perceptron Algorithm

Sham M Kakade
© 2019

University of Washington
cse446-staff@cs.washington.edu
Announcements

▶ HW1 posted.
▶ Today: the perceptron algo
Is there a happy medium?

- Decision trees (that aren’t too deep): use relatively few features to classify.
- If we want to use ’all’ the features, then we need a deep (high complexity) decision tree (so overfitting will be more of a concern).
- Is there a ’low complexity’ method (something which is better at keeping the generalization error small) which is able to utilize all the features for prediction?
- One idea:
 A ’linear classifier’: use all features, but weight them.
Input signals come in through dendrites, output signal passes out through the axon.
A “parametric” Hypothesis

▶ Consider using a “linear classifier”:

\[
f(x) = \text{sign}(w \cdot x + b)
\]

where \(w \in \mathbb{R}^d \) and \(b \) is a scalar.

▶ Here \(\text{sign}(z) \) is the function which is 1 if \(z \geq 0 \) and \(-1\) otherwise.
(Let us say that \(\mathcal{Y} = \{-1, 1\} \).)

▶ Notation: \(x \in \mathbb{R}^d \); \(x[i] \) denotes \(i \)-th coordinate; remember that:

\[
w \cdot x = \sum_{j=1}^{d} w[j] \cdot x[j]
\]

▶ Learning requires us to set the weights \(w \) and the bias \(b \).
▶ (convenience) we can always append 1 to the vector \(x \) through the concatenation

\[
x \leftarrow (x, 1).
\]

This transformation allows us to absorb the bias \(b \) into the last component of the weight vector.
Geometrically...

- What does the decision boundary look like?
What would we like to do?

\[
\tilde{\epsilon}(w) = \frac{1}{N} \sum_{i=1}^{N} 1\{y_i \neq \text{sign}(w \cdot x_i)\}
\]

- **Optimization problem:** find a classifier which minimizes the classification loss on the training dataset \(D\):
 \[
 \min_w \tilde{\epsilon}(w)
 \]

- Problem: (in general) this is an NP-Hard problem.
- Let’s ignore this, and think of an algorithm.

This is the general approach of loss function minimization: find parameters which make our training error “small” (and which also generalizes)
The Perceptron Learning Algorithm (Rosenblatt, 1958)

Let’s think of an **online** algorithm, where we try to update w as we examine each training point (x_i, y_i), one at a time.

Consider the 'epoch based' algorithm:

1. For all (x, y) in our training set:
2. Choose a point (x, y) without replacement from D:
 - Let $\hat{y} = \text{sign}(w \cdot x)$
 - If $\hat{y} = y$, then do not update:
 \[w_{t+1} = w_t \]
 - If $\hat{y} \neq y$,
 \[w_{t+1} = w_t + yx \]

return to the first step.

When to stop?
Parameters and Convergence

This is the first supervised algorithm we have seen with (no-trivial) real valued parameters, w.

- The perceptron learning algorithm’s sole hyperparameter is E, the number of epochs (passes over the training data). How should we tune E? Use a Dev set.
- Basic question: will the algorithm converge or not?
 - Can you say what has to occur for the algorithm to converge? (Novikoff, 1962)
 - Can we understand when it will *never* converge? (Minsky and Papert, 1969)
When does the perceptron not converge?
Linear Separability

A dataset \(D = \{(x_n, y_n)\}_{n=1}^{N} \) is **linearly separable** if there exists some linear classifier (defined by \(w, b \)) such that, for all \(n \), \(y_n = \text{sign}(w \cdot x_n + b) \).
The Perceptron Convergence

- Again taking $b = 0$ (absorbing it into w).
- Margin def: Suppose the data are linearly separable, and all data points are γ away from the separating hyperplane. Precisely, there exists a w_*, which we can assume to be of unit norm (without loss of generality), such that for all $(x, y) \in D$.

$$y (w_* \cdot x) \geq \gamma$$

γ is the margin.

Theorem: (Novikoff, 1962) Suppose the inputs bounded such that $\|x\| \leq R$. Assume our data D is linearly separable with margin γ. Then the perceptron algorithm will make at most $\frac{R^2}{\gamma^2}$ mistakes.

(This implies that at most $O\left(\frac{N}{\gamma^2}\right)$ updates, after which time w_t never changes.)
Proof of the “Mistake Lemma”

- Let M_t be the number of mistakes at time t.
 - If we make a mistake using w_t on (x, y), then observe that $yw_t \cdot x \leq 0$.
 - Suppose we make a mistake at time t:
 \[w_\ast \cdot w_t = w_\ast \cdot (w_{t-1} + yx) = w_\ast \cdot w_{t-1} + yw_\ast \cdot x \geq w_\ast \cdot w_{t-1} + \gamma. \]
 Since $w_0 = 0$ and $w_\ast \cdot w_t$ grows by γ every time we make a mistake, this implies that $w_\ast \cdot w_t \geq \gamma M_t$.
 - Also, if we make a mistake at time t (using that $yw_t \cdot x \leq 0$),
 \[\|w_t\|^2 = \|w_{t-1}\|^2 + 2yw_{t-1} \cdot x + \|x\|^2 \leq \|w_{t-1}\|^2 + 0 + \|x\|^2 \leq \|w_{t-1}\|^2 + R^2. \]
 Since $\|w_t\|^2$ grows by R^2 on every mistake, this implies $\|w_t\|^2 \leq R^2 M_t$ and so $\|w_t\| \leq R \sqrt{M_t}$.
- Now we have that:
 \[\gamma M_t \leq w_\ast \cdot w_t \leq \|w_\ast\|\|w_t\| \leq R \sqrt{M_t}. \]
 solving for M_t completes the proof.
