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Announcements

» Kevin Jamieson lecture this friday (on structured neural nets).
» EC due Sun
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review: multi-layer perceptrons (MLPs)
» (typically) indexes: layer [, nodes: i or j or k

P input activations: given outputs {z](-l)} from layer [ — 1, the input activations are:
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» the output activation of each node is:
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» The target function/output, after we go through L-hidden layers, is then:
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the 'backprop’ algorithm

Computing a gradient on a single datapoint:

> suppose £(y, y(z)) = 3(y — y(x))*.
» Backprop computes V{(y,y(x)) very efficiently!

» it does this by recursively computing: 5](-1) = Og(ay(l?) in a 'backwards’ pass.
J

The Forward Pass:

1. Starting with the input z, go forward (from the input to the output layer),

compute and store in memory the variables
a® D) q@) @) gl) 1) qL+1)
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continued...
The Backward Pass:
1. Initialize as follows:
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and compute the derivatives at the output layer:
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then compute the derivatives at layer [:
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Example: Convex vs Nonconvex Functions
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Gradient descent (or SGD): convexity vs. non-convexity?

w <+ w —nVf(w)

» Convex problems: gd/sgd will reach the global optima.

» Non-convex problems: we should not (necessarily) expect any algorithm to reach
the global optima..

» When do we expect GD/SGD to stop? or stop moving 'quickly’?
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Terminology: stationary points

» stationary (or critical) point of f(w): a point which has zero gradient.

» Jocal minima of f(w): a point which locally is at a minima (i.e. any infinitesimal
change to the point will result in an infinitesimal decrease in the function value).

» global minimum of f(w): a point w, which achieves the minimal possible value of
f(w) over all w.

» (local/global maxima defs are analogous)

» saddle point of f(w): a stationary point that is neither a local maxima or minima.
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Stationary points

local min

local max

saddle point

Fig taken from

(34
(31

» saddle points could be 'very’ flat in some directions

off the convex path’’ also see
escaping saddle points efficiently’’
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https://www.offconvex.org/2016/03/22/saddlepoints/
https://www.offconvex.org/2017/07/19/saddle-efficiency/

Things to understand

» Initialization
» Learning rate turning

» saturation/vanishing gradients
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Initialization Tips

> convex case: we should start with w = 0.

P non-convex case: starting with them all 0 is almost always bad.
(often it is a saddle point. why?)

» too large:

» too small:

» decay: same heuristics as before
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Initialization Tips: ideas based on 'sensitivity’

» we want the starting gradient to not be 0 or “too small”. why?

A\

also, we want the starting gradient not be too large. why?

» instructor: a good starting point is when our initial loss is 'slightly’ larger than the
loss had our weights been all O's.

» How would we find this setting?

> Also: the “Xavier” initialization.
(more robust version of this idea)
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Learning rates: tips

» very similar to before: find a point at which your /loss decreases quickly (say gives
you a large drop in loss after some number of updates).

» be careful about using too a ’large’ learning rate:
tanh(-) and o(-) functions saturate, meaning that their gradients become small
when their inputs are large.

» what does the gradient of tanh(-) or o(-) look like?
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Saturation/Vanishing gradients

» (please) do the readings
» in the convex case, a small gradient is good (our loss is nearly optimal).

» 'vanishing gradients’: in the non-convex case, for a variety of reasons gradients
can become small.
we could be at a saddle point.
(please) do the readings
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GD/SGD theory: convergence

» you will find a w where ||V f(w)|| is small “quickly” with both GD and SGD.
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