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Announcements

I Kevin Jamieson lecture this friday (on structured neural nets).

I EC due Sun
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review: multi-layer perceptrons (MLPs)

I (typically) indexes: layer l, nodes: i or j or k

I input activations: given outputs {z(l)j } from layer l − 1, the input activations are:

a
(l)
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d(l−1)∑
i=1

w
(l)
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i

I the output activation of each node is:

z
(l)
j = h(a

(l)
j )

I The target function/output, after we go through L-hidden layers, is then:

ŷ(x) = a(L+1) =

d(L)∑
i=1

w
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the ’backprop’ algorithm

Computing a gradient on a single datapoint:

I suppose `(y, ŷ(x)) = 1
2(y − ŷ(x))

2.

I Backprop computes ∇`(y, ŷ(x)) very efficiently!

I it does this by recursively computing: δ
(l)
j := ∂`(y,ŷ)

∂a
(l)
j

in a ’backwards’ pass.

The Forward Pass:

1. Starting with the input x, go forward (from the input to the output layer),
compute and store in memory the variables
a(1), z(1), a(2), z(2), . . . a(L), z(L), a(L+1)
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continued...
The Backward Pass:

1. Initialize as follows:

δ(L+1) = −(y − ŷ) = −(y − a(L+1))

and compute the derivatives at the output layer:

∂`(y, ŷ)

∂w
(L+1)
j

= −(y − ŷ)z(L)j

2. From l = L, . . . 1

δ
(l)
j = h′(a

(l)
j )

d(l+1)∑
k=1

w
(l+1)
kj δ

(l+1)
k

then compute the derivatives at layer l:

∂`(y, ŷ)

∂w
(l)
ji

= δ
(l)
j z

(l−1)
i
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Example: Convex vs Nonconvex Functions
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Gradient descent (or SGD): convexity vs. non-convexity?

w ← w − η∇f(w)

I Convex problems: gd/sgd will reach the global optima.

I Non-convex problems: we should not (necessarily) expect any algorithm to reach
the global optima..

I When do we expect GD/SGD to stop? or stop moving ’quickly’?

5 / 12



Terminology: stationary points

I stationary (or critical) point of f(w): a point which has zero gradient.

I local minima of f(w): a point which locally is at a minima (i.e. any infinitesimal
change to the point will result in an infinitesimal decrease in the function value).

I global minimum of f(w): a point w∗ which achieves the minimal possible value of
f(w) over all w.

I (local/global maxima defs are analogous)

I saddle point of f(w): a stationary point that is neither a local maxima or minima.
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Stationary points

I saddle points could be ’very’ flat in some directions.

Fig taken from ‘‘off the convex path’’ also see

‘‘escaping saddle points efficiently’’ .
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https://www.offconvex.org/2016/03/22/saddlepoints/
https://www.offconvex.org/2017/07/19/saddle-efficiency/


Things to understand

I Initialization

I Learning rate turning

I saturation/vanishing gradients
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Initialization Tips

I convex case: we should start with w = 0.

I non-convex case: starting with them all 0 is almost always bad.
(often it is a saddle point. why?)

I too large:

I too small:

I decay: same heuristics as before
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Initialization Tips: ideas based on ’sensitivity’

I we want the starting gradient to not be 0 or “too small”. why?

I also, we want the starting gradient not be too large. why?

I instructor: a good starting point is when our initial loss is ’slightly’ larger than the
loss had our weights been all 0’s.

I How would we find this setting?

I Also: the “Xavier” initialization.
(more robust version of this idea)
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Learning rates: tips

I very similar to before: find a point at which your loss decreases quickly (say gives
you a large drop in loss after some number of updates).

I be careful about using too a ’large’ learning rate:
tanh(·) and σ(·) functions saturate, meaning that their gradients become small
when their inputs are large.

I what does the gradient of tanh(·) or σ(·) look like?
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Saturation/Vanishing gradients

I (please) do the readings

I in the convex case, a small gradient is good (our loss is nearly optimal).

I ’vanishing gradients’: in the non-convex case, for a variety of reasons gradients
can become small.
we could be at a saddle point.
(please) do the readings
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GD/SGD theory: convergence

I you will find a w where ‖∇f(w)‖ is small “quickly” with both GD and SGD.
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