
Machine Learning (CSE 446):
Regularization and Gradient Descent

The “large d” regime.

Sham M Kakade
c© 2019

University of Washington
cse446-staff@cs.washington.edu

0 / 10

Least squares: What could go wrong?!

I The optimization problem:

min
w

1

N
‖Y −Xw‖2

where Y is an N -vector and X is our N × d data matrix.

I The solution is the least squares estimator:

wleast squares = (X>X)−1X>Y

What if d is bigger than N? Even if not?

1 / 10

What could go wrong?

Suppose d > N :

What about N > d?

I What happens if features are very correlated?
(e.g. ’rows/columns in our matrix are co-linear.)

2 / 10

A fix: Regularization
I Regularize the optimization problem:

min
w

1

N

N∑
i=1

(yi −w · xi)
2 + λ‖w‖2 =

min
w

1

N
‖Y −X>w‖2 + λ‖w‖2

I This particular case: “Ridge” Regression, Tikhonov regularization

I The solution is the least squares estimator:

wleast squares =

(
1

N
X>X + λI

)−1(1

N
X>Y

)

3 / 10

Why do we care about large d?

I Example: Suppose x is three dimensional, i.e. x = (x[1], x[2], x[3]). Define a new
feature vector as follows:

Φ(x) = (1, x[1], x[2], x[3], x[1]2, x[2]2, x[3]2, x[1]x[2], x[1]x[3], x[2]x[3]) .

The first term is the bias term, the next three coordinates above are considered
the “linear” terms, and the remaining terms are the quadratic terms.

I Now use Φ(x) instead of x in our regression problem.

Feature mappings give us more expressivity. They also “blow up” the dimensionality.

4 / 10

The “general” approach

I The regularized optimization problem:

min
w

1

N

N∑
i=1

`(yi,w · xi) +R(w)

I Penalty some w more than others.
Example: R(w) = ‖w‖2

How do we find a solution quickly?

5 / 10

Remember: convexity

I A function F (·) is convex if for all
0 ≤ t ≤ 1, w and w′,

F ((1−t)w+tw′) ≤ (1−t)F (w)+tF (w′)

5 / 10

Gradient Descent

I Want to solve:

min
w
F (w)

I How should we update w?

6 / 10

Gradient Descent

Data: function F : Rd → R, number of iterations K, step sizes η(1), . . . , η(K)

Result: w ∈ Rd

initialize: w(0) = 0;
for k ∈ {1, . . . ,K} do

w(k) = w(k−1) − η(k) · ∇F (w(k−1));
end

return w(K);
Algorithm 1: GradientDescent

6 / 10

Gradient Descent: Convergence

I Letting w∗ = argminw F (w) denote the global minimum

I Let w(k) be our parameter after k updates.

I Thm: Suppose F is convex and “smooth”. Using a fixed step size η, we have:

F (w(k))− F (w∗) ≤ O
(

1

·k

)

7 / 10

Gradient Descent: Simple example 1

I For w ∈ R, F (w) = 1
2w

2

I w∗ = argmin∗ F (w) = 0

I dF
dw = w.

I The update:
w(k+1) = w(k) − ηw(k) = (1− η)w(k)

I Always use η > 0 (for GD)

I For η ≥ 2, w(k) does not converge.
(diverges for η strictly above 2).

I For |η| < 1, w(k) converges to 0 (quickly!).

I For |η| = 1, w(1) = 0.
This convergence in one step is ’lucky’, due to being in 1dim.

8 / 10

Gradient Descent: Simple example 2

I For w ∈ R2, F (w) = 1
2w
>diag(1, 2)w = 1

2

(
w2
1 + 2w2

2

)
I w∗ = argminw F (w) = 0

I ∇F (w) = (w1, 2w2)
>.

I The update:
w(k+1) = w(k) − η∇F (w(k))

I What happens here?

9 / 10

Gradient Descent: More formal statement
[noframenumbering]

I Letting w∗ = argminw F (w) denote the global minimum

I Let w(k) be our parameter after k updates.

I Thm: Suppose F is convex and “L-smooth”. Using a fixed step size η ≤ 1
L , we

have:

F (w(k))− F (w∗) ≤ ‖w
(0) −w∗‖2

η · k

I Smooth functions: for all w,w′

‖∇F (w)−∇F (w′)‖ ≤ L‖w − w′‖

I Proof idea:
1. If our gradient is large, we will make good progress decreasing our function value:

2. If our gradient is small, we must have value near the optimal value:

10 / 10

