Machine Learning (CSE 446):
Regularization and Gradient Descent
The “large d" regime.

Sham M Kakade

© 2019

University of Washington
csed446-staff@cs.washington.edu

0/10

Least squares: What could go wrong?!

» The optimization problem:

1 2
min NHY — Xw||

where Y is an N-vector and X is our N x d data matrix.

» The solution is the least squares estimator:
Wleast squares __ (XTX>71XTY

What if d is bigger than N? Even if not?

1/10

What could go wrong?

Suppose d > N:

What about N > d?

» What happens if features are very correlated?
(e.g. 'rows/columns in our matrix are co-linear.)

2/10

A fix: Regularization

» Regularize the optimization problem:

NZ —wex)? 4 Aw|? =

1

1Y = X Tw? + Alw]®

2

» This particular case: “Ridge” Regression, Tikhonov regularization

» The solution is the least squares estimator:

1 e
least squares __ fXTX A 7XTY
v <N + N

3/10

Why do we care about large d?

» Example: Suppose x is three dimensional, i.e. x = (z[1], z[2], z[3]). Define a new
feature vector as follows:

®(x) = (1,2[1],2[2], 2[3], 1], 2[2]*, «[3], 2 [1]r[2], (1] [3], x [2][3]) -

The first term is the bias term, the next three coordinates above are considered
the “linear” terms, and the remaining terms are the quadratic terms.

» Now use ®(x) instead of = in our regression problem.

Feature mappings give us more expressivity. They also “blow up” the dimensionality.

4/10

The “general” approach

» The regularized optimization problem:
1N
min 37 2 Ko) + RO
i
P Penalty some w more than others.

Example: R(w) = |jw||?

How do we find a solution quickly?

5/10

Remember: convexity

» A function F(-) is convex if for all
0<t<1, wandw,

F((1-t)yw+tw') < (1—t)F(w)+tF(w')

5

\/

5/10

Gradient Descent

A » Want to solve:
min F(w)

w

» How should we update w?

5

\/

6/10

Gradient Descent

Data: function F : R — R, number of iterations K, step sizes n(1), ... n(%)
Result: w ¢ R?
initialize: w(® = 0;
for ke {1,...,K} do
‘ wk) = wk=1) _pk) . g (wk-1);
end

return W(K)

Algorithm 1: GRADIENTDESCENT

6/10

Gradient Descent: Convergence

» Letting w* = argmin,, F'(w) denote the global minimum
» Let w(*) be our parameter after k updates.

» Thm: Suppose F' is convex and “smooth”. Using a fixed step size 7, we have:

Fw®) - F(w*) < O <1k)

7/10

Gradient Descent: Simple example 1

> Forw € R, F(w) = uw?
» w* = argmin, F(w) =0
> % = w.
» The update:
wk D) = w®) — p®) = (1 = p)w®
» Always use > 0 (for GD)

» For n > 2, w*) does not converge.
(diverges for 7 strictly above 2).

> For || < 1, w®) converges to 0 (quickly!).

> For |n| =1, wM =0.
This convergence in one step is 'lucky’, due to being in 1dim.

8/10

Gradient Descent: Simple example 2

For w € R?, F(w) = fw'diag(1,2)w = § (w} + 2w3)
w* = argming, F(w) =0
VE(w) = (wy,2ws)".

The update:
w*tD = ®) — v F(w®)

» What happens here?

9/10

Gradient Descent: More formal statement
[noframenumbering]
» Letting w* = argmin,, F'(w) denote the global minimum
» Let w(*) be our parameter after k updates.

» Thm: Suppose F is convex and “L-smooth”. Using a fixed step size n < L, we

have:
F(w®)) — F(w*) <
» Smooth functions: for all w,w’

IVF(w) = VF(w')]| < Ljjw — w'|

» Proof idea:

1. If our gradient is large, we will make good progress decreasing our function value:

2. If our gradient is small, we must have value near the optimal value:

10/10

