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Announcements

» HW?2 empirical problem for extra credit added
P> milestone due tonight

» Fri will be 'tricks’/feature construction
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Relax!

» The mis-classification optimization problem:

N

Hi‘i,n % Z {yi(w-x;) <0}

=1

» Instead, let's try to choose a “reasonable” loss function ¢(y;, w - x) and then try
to solve the relaxation:

1 N
In“i,n N Z;f(yi,w - X;)
P
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The square loss! (and linear regression)

» The square loss: £(y,w - x) = (y — w - x)2.
» The relaxed optimization problem:
| X
- 2
min z;(yl —W-X;)
1=

P nice properties:
» for binary classification, it is a an upper bound on the zero-one loss.

» |t makes sense more generally, e.g. if we want to predict real valued y
» We have a convex optimization problem.
» For classification, what is your decision rule using a w?
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Least squares: let's minimize it!

» The optimization problem:
N
minﬁ E (Y — W -x,)% =

w
n=1

" 9
min NHY — Xw||

where Y is an N-vector and X is our N x d data matrix.
» The solution is the least squares estimator:

Wleast squares __ (XTX)—IXTY

> Let's give some hits on how to find this solution!
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Vector calculus hints |

» suppose we have a function f(w) =w-c=w'c=c'w = > wljleli], where w
and c are d-dimensional vectors.

» Elementary calculus tells gives us scalar derivatives:

of(w) _ .
owli] ]

» The gradient is the vector of all the partial derivatives:

_ (00w) Of(w)  o5w)\T
Vi(w) = <6w[1] T ow(2] T Owld] >

» So we have that:
Vfw)=c
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Vector calculus hints |l
P> suppose we have a function
flw) =w'Mw = wjlwk]M[j,k,
Jk
where M is a symmetric d X d matrix.
» Elementary calculus tells gives us scalar derivatives:

af(g? ::2253A4ﬁ,jhuw]

ow

» The gradient is just the matrix of all the partial derivatives:

_(0fw) 95w)  orw)\T
vmw~<mm’%m““%w>

P It is straightforward to see that a far more compact way to write the gradient is:
Vf(w) =2Mw

(just equate each coordinate with the scalar derivative).
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Least squares derivation

» Using that |[a]?> = a'a,
1
N
1

- < (YTY v T Xw + wTXTXw)

» Our optimization problem is then:

1
Y = Xwl? (YTY YT Xw— (Xw) Y + wTXTXw)

1
min — (YTY v T Xw+ WTXTXW)
w N

» Taking the derivative of the above (using our “hints") and setting it to O leads to:

we want a w such that:
X" Xw=X"Y

» The solution is the least squares estimator:
Wleast squares __ (XTX)leTY
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Least squares: What could go wrong?!

» The optimization problem:

1 2
min NHY — Xw||

where Y is an N-vector and X is our N x d data matrix.

» The solution is the least squares estimator:
Wleast squares __ (XTX>71XTY

What if d is bigger than N? Even if not?
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What could go wrong?

Suppose d > N:

What about N > d?

» What happens if features are very correlated?
(e.g. 'rows/columns in our matrix are co-linear.)
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A fix: Regularization

» Regularize the optimization problem:

Z —wx,) 2+ Mw|? =

=1

min *HY — X Twl® + Allw]?
w N

» This particular case: “Ridge” Regression, Tikhonov regularization

» The solution is the least squares estimator:

1 A
least squares _ fXTX AL fXTY
v (N * N
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The “general” approach

» The regularized optimization problem:

N
1
H&i’n N Z Uy, W - X)) + R(W)

n=1

» Penalty some w more than others.
Example: R(w) = |jw||?

How do we find a solution quickly?
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Gradient Descent (for a convex function)

A » Want to solve:
min F(2)

z

» How should we update z?7

5

\/

11/12



Gradient Descent

Data: function F': RY — R, number of iterations K, step sizes (n1), ... n(5)
Result: z € RY
initialize: z(0) = 0;
for ke {1,...,K} do
‘ z*) = z(b=1) _ p(0) . v, P (z(k—1),
end

return Z(K)

Algorithm 1: GRADIENTDESCENT
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