
Machine Learning (CSE 446):
Regression and Regularization

Sham M Kakade
c© 2019

University of Washington
cse446-staff@cs.washington.edu

0 / 12

Announcements

I HW2 empirical problem for extra credit added

I milestone due tonight

I Fri will be ’tricks’/feature construction

0 / 12

Relax!

I The mis-classification optimization problem:

min
w

1

N

N∑
i=1

1{yi(w · xi) ≤ 0}

I Instead, let’s try to choose a “reasonable” loss function `(yi,w · x) and then try
to solve the relaxation:

min
w

1

N

N∑
i=1

`(yi,w · xi)

1 / 12

The square loss! (and linear regression)

I The square loss: `(y,w · x) = (y −w · x)2.

I The relaxed optimization problem:

min
w

1

N

N∑
i=1

(yi −w · xi)
2

I nice properties:
I for binary classification, it is a an upper bound on the zero-one loss.
I It makes sense more generally, e.g. if we want to predict real valued y.
I We have a convex optimization problem.

I For classification, what is your decision rule using a w?

2 / 12

Least squares: let’s minimize it!

I The optimization problem:

min
w

1

N

N∑
n=1

(yn −w · xn)
2 =

min
w

1

N
‖Y −Xw‖2

where Y is an N -vector and X is our N × d data matrix.

I The solution is the least squares estimator:

wleast squares = (X>X)−1X>Y

I Let’s give some hits on how to find this solution!

3 / 12

Vector calculus hints I

I suppose we have a function f(w) = w · c = w>c = c>w =
∑

j w[j]c[j] , where w
and c are d-dimensional vectors.

I Elementary calculus tells gives us scalar derivatives:

∂f(w)

∂w[i]
= c[i]

I The gradient is the vector of all the partial derivatives:

∇f(w) :=
(
∂f(w)

∂w[1]
,
∂f(w)

∂w[2]
, . . .

∂f(w)

∂w[d]

)>
I So we have that:

∇f(w) = c

4 / 12

Vector calculus hints II
I suppose we have a function

f(w) = w>Mw =
∑
j,k

w[j]w[k]M [j, k] ,

where M is a symmetric d× d matrix.
I Elementary calculus tells gives us scalar derivatives:

∂f(w)

∂w[i]
= 2

∑
j

M [i, j]w[j]

I The gradient is just the matrix of all the partial derivatives:

∇f(w) :=
(
∂f(w)

∂w[1]
,
∂f(w)

∂w[2]
, . . .

∂f(w)

∂w[d]

)>
I It is straightforward to see that a far more compact way to write the gradient is:

∇f(w) = 2Mw

(just equate each coordinate with the scalar derivative).
5 / 12

Least squares derivation

I Using that ‖a‖2 = a>a,

1

N
‖Y −Xw‖2 =

1

N

(
Y >Y − Y >Xw − (Xw)>Y +w>X>Xw

)
=

1

N

(
Y >Y − 2Y >Xw +w>X>Xw

)
I Our optimization problem is then:

min
w

1

N

(
Y >Y − 2Y >Xw +w>X>Xw

)
I Taking the derivative of the above (using our “hints”) and setting it to 0 leads to:

we want a w such that:
X>Xw = X>Y

I The solution is the least squares estimator:

wleast squares = (X>X)−1X>Y

6 / 12

Least squares: What could go wrong?!

I The optimization problem:

min
w

1

N
‖Y −Xw‖2

where Y is an N -vector and X is our N × d data matrix.

I The solution is the least squares estimator:

wleast squares = (X>X)−1X>Y

What if d is bigger than N? Even if not?

7 / 12

What could go wrong?

Suppose d > N :

What about N > d?

I What happens if features are very correlated?
(e.g. ’rows/columns in our matrix are co-linear.)

8 / 12

A fix: Regularization
I Regularize the optimization problem:

min
w

1

N

N∑
n=1

(yn −w · xn)
2 + λ‖w‖2 =

min
w

1

N
‖Y −X>w‖2 + λ‖w‖2

I This particular case: “Ridge” Regression, Tikhonov regularization

I The solution is the least squares estimator:

wleast squares =

(
1

N
X>X + λI

)−1(1

N
X>Y

)

9 / 12

The “general” approach

I The regularized optimization problem:

min
w

1

N

N∑
n=1

`(yn,w · xn) +R(w)

I Penalty some w more than others.
Example: R(w) = ‖w‖2

How do we find a solution quickly?

10 / 12

Gradient Descent (for a convex function)

I Want to solve:

min
z
F (z)

I How should we update z?

11 / 12

Gradient Descent

Data: function F : Rd → R, number of iterations K, step sizes 〈η(1), . . . , η(K)〉
Result: z ∈ Rd

initialize: z(0) = 0;
for k ∈ {1, . . . ,K} do

z(k) = z(k−1) − η(k) · ∇zF (z
(k−1));

end

return z(K);
Algorithm 1: GradientDescent

12 / 12

